P4149 [IOI2011]Race 点分治
思路: 点分治
提交:5次
题解:
刚开始用排序+双指针写的,但是调了一晚上,总是有两个点过不了,第二天发现原因是排序时的\(cmp\)函数写错了:如果对于路径长度相同的,我们从小往大按边数排序,当双指针出现\(==k\)时,即我们应先左移右指针,否则答案可能会变劣(仔细想一想);若反着排序,应该先右移左指针。
#include<bits/stdc++.h>
#define R register int
using namespace std;
namespace Luitaryi {
template<class I> inline I g(I& x) { x=0; register I f=1;
register char ch; while(!isdigit(ch=getchar())) f=ch=='-'?-1:f;
do x=x*10+(ch^48); while(isdigit(ch=getchar())); return x*=f;
} const int N=2e5+10,Inf=1e+9;
int n,K,cnt,sum,rt,tot,ans=N; bool vis[N];
int vr[N<<1],nxt[N<<1],fir[N],w[N<<1],sz[N],d[N],f[N],b[N],mx[N],mem[N];
inline void add(int u,int v,int ww) {
vr[++cnt]=v,nxt[cnt]=fir[u],w[cnt]=ww,fir[u]=cnt;
vr[++cnt]=u,nxt[cnt]=fir[v],w[cnt]=ww,fir[v]=cnt;
}
inline void getsz(int u,int fa) { sz[u]=1,mx[u]=0;
for(R i=fir[u];i;i=nxt[i]) { R v=vr[i];
if(v==fa||vis[v]) continue;
getsz(v,u),sz[u]+=sz[v];
mx[u]=max(mx[u],sz[v]);
} mx[u]=max(mx[u],sum-sz[u]);
if(mx[u]<mx[rt]) rt=u;
}
inline void getdis(int u,int fa) { mem[++tot]=u;
for(R i=fir[u];i;i=nxt[i]) { R v=vr[i];
if(v==fa||vis[v]) continue;
d[v]=d[u]+w[i],f[v]=f[u]+1,b[v]=b[u];
if(d[v]<=K) getdis(v,u);
}
}
inline bool cmp(const int& a,const int& b) {
return d[a]<d[b]||(d[a]==d[b]&&f[a]>f[b]);
}
inline void solve(int u,int fa) {
tot=0,vis[u]=true; mem[++tot]=u,d[u]=f[u]=0,b[u]=u;
for(R i=fir[u];i;i=nxt[i]) { R v=vr[i];
if(v==fa||vis[v]) continue;
d[v]=w[i],f[v]=1,b[v]=v; getdis(v,u);
} sort(mem+1,mem+tot+1,cmp);
// for(R i=1;i<=tot;++i) cout<<mem[i]<<" "; cout<<endl;
R l=1,r=tot; while(l<r) {
if(d[mem[l]]+d[mem[r]]>K) --r;
else if(d[mem[l]]+d[mem[r]]<K) ++l;
else if(b[mem[l]]==b[mem[r]]) {
// if(d[mem[r]]==d[mem[r-1]]) --r;
// else ++l;
if(d[mem[l]]==d[mem[l+1]]) ++l;
else --r;
} else {
ans=min(ans,f[mem[l]]+f[mem[r]]);
// if(d[mem[r]]==d[mem[r-1]]) --r;
// else ++l;
if(d[mem[l]]==d[mem[l+1]]) ++l;
else --r;
}
} for(R i=fir[u];i;i=nxt[i]) { R v=vr[i];
if(v==fa||vis[v]) continue;
sum=sz[v],rt=0,mx[rt]=Inf;
getsz(v,u); getsz(rt,-1); solve(rt,u);
}
}
inline void main() {
g(n),g(K); for(R i=1,u,v,w;i<n;++i) g(u),g(v),g(w),++u,++v,add(u,v,w);
sum=n,mx[0]=Inf; getsz(1,-1),getsz(rt,-1); solve(rt,-1);
if(ans==N) return (void) puts("-1"); printf("%d\n",ans);
}
} signed main() {Luitaryi::main(); return 0;}
但是上面的方法比较慢,多一个\(log\)。
于是还是类比点分治板子的思想,对于一颗子树,与之前的子树做贡献。我们可以开一个类似桶的数组记录长度为\(len\)的路径有没有出现过,同时对应记录长度为\(len\)的路径对应的最小边数。每求出来一颗子树的信息就扫一遍。
// luogu-judger-enable-o2
#include<bits/stdc++.h>
#define R register int
using namespace std;
namespace Luitaryi {
template<class I> inline I g(I& x) { x=0; register I f=1;
register char ch; while(!isdigit(ch=getchar())) f=ch=='-'?-1:f;
do x=x*10+(ch^48); while(isdigit(ch=getchar())); return x*=f;
} const int N=2e5+10,M=1e6+10,Inf=0x3f3f3f3f;
int n,K,cnt,sum,rt,tot,ans=N,SZ; bool vis[N],mem[M];
int vr[N<<1],nxt[N<<1],fir[N],w[N<<1],sz[N],d[N],f[M],s[N],mx[N],buf[N],l[N],dis[N];
inline void add(int u,int v,int ww) {
vr[++cnt]=v,nxt[cnt]=fir[u],w[cnt]=ww,fir[u]=cnt;
vr[++cnt]=u,nxt[cnt]=fir[v],w[cnt]=ww,fir[v]=cnt;
}
inline void getsz(int u,int fa) { sz[u]=1,mx[u]=0;
for(R i=fir[u];i;i=nxt[i]) { R v=vr[i];
if(v==fa||vis[v]) continue;
getsz(v,u),sz[u]+=sz[v];
mx[u]=max(mx[u],sz[v]);
} mx[u]=max(mx[u],sum-sz[u]);
if(mx[u]<mx[rt]) rt=u;
}
inline void getdis(int u,int fa) {
dis[++tot]=d[u],l[tot]=s[u];
for(R i=fir[u];i;i=nxt[i]) { R v=vr[i];
if(v==fa||vis[v]) continue;
d[v]=d[u]+w[i],s[v]=s[u]+1;
if(d[v]<=K) getdis(v,u);
}
}
//inline bool cmp(const int& a,const int& b) {
// return d[a]<d[b]||(d[a]==d[b]&&f[a]>f[b]);
//}
//inline void solve(int u,int fa) {
// tot=0,vis[u]=true; mem[++tot]=u,d[u]=f[u]=0,b[u]=u;
// for(R i=fir[u];i;i=nxt[i]) { R v=vr[i];
// if(v==fa||vis[v]) continue;
// d[v]=w[i],f[v]=1,b[v]=v; getdis(v,u);
// } sort(mem+1,mem+tot+1,cmp);
//// for(R i=1;i<=tot;++i) cout<<mem[i]<<" "; cout<<endl;
// R l=1,r=tot; while(l<r) {
// if(d[mem[l]]+d[mem[r]]>K) --r;
// else if(d[mem[l]]+d[mem[r]]<K) ++l;
// else if(b[mem[l]]==b[mem[r]]) {
//// if(d[mem[r]]==d[mem[r-1]]) --r;
//// else ++l;
// if(d[mem[l]]==d[mem[l+1]]) ++l;
// else --r;
// } else {
// ans=min(ans,f[mem[l]]+f[mem[r]]);
//// if(d[mem[r]]==d[mem[r-1]]) --r;
//// else ++l;
// if(d[mem[l]]==d[mem[l+1]]) ++l;
// else --r;
// }
// } for(R i=fir[u];i;i=nxt[i]) { R v=vr[i];
// if(v==fa||vis[v]) continue;
// sum=sz[v],rt=0,mx[rt]=Inf;
// getsz(v,u); getsz(rt,-1); solve(rt,u);
// }
//}
inline void solve(int u,int fa) { tot=0; vis[u]=true;
buf[++SZ]=0,mem[0]=true,d[u]=s[u]=0,f[0]=0;
for(R i=fir[u];i;i=nxt[i]) { R v=vr[i];
if(vis[v]||v==fa) continue;
d[v]=w[i],s[v]=1; getdis(v,u);
for(R i=1;i<=tot;++i) if(K>=dis[i]&&mem[K-dis[i]])
ans=min(ans,f[K-dis[i]]+l[i]);
for(R i=1;i<=tot;++i) {
if(!mem[dis[i]]) buf[++SZ]=dis[i],mem[dis[i]]=true;
f[dis[i]]=min(f[dis[i]],l[i]);
} tot=0;
} while(SZ) mem[buf[SZ]]=false,f[buf[SZ]]=Inf,--SZ;
for(R i=fir[u];i;i=nxt[i]) { R v=vr[i];
if(v==fa||vis[v]) continue;
sum=sz[v],rt=0,mx[rt]=Inf;
getsz(v,u),getsz(rt,-1); solve(rt,u);
}
}
inline void main() {
memset(f,0x3f,sizeof(f)); g(n),g(K);
for(R i=1,u,v,w;i<n;++i) g(u),g(v),g(w),++u,++v,add(u,v,w);
sum=n,mx[0]=Inf; getsz(1,-1),getsz(rt,-1); solve(rt,-1);
if(ans==N) return (void) puts("-1"); printf("%d\n",ans);
}
} signed main() {Luitaryi::main(); return 0;}
还有最近老犯一个错误,数组名老弄重导致算错。。。必须给予重视。。
2019.08.31
69
P4149 [IOI2011]Race 点分治的更多相关文章
- 洛谷$P4149\ [IOI2011]\ Race$ 点分治
正解:点分治 解题报告: 传送门$QwQ$ 昂先不考虑关于那个长度的限制考虑怎么做? 就开个桶,记录所有边的取值,每次加入边的时候查下是否可行就成$QwQ$ 然后现在考虑加入这个长度的限制?就考虑把这 ...
- 模板—点分治B(合并子树)(洛谷P4149 [IOI2011]Race)
洛谷P4149 [IOI2011]Race 点分治作用(目前只知道这个): 求一棵树上满足条件的节点二元组(u,v)个数,比较典型的是求dis(u,v)(dis表示距离)满足条件的(u,v)个数. 算 ...
- BZOJ 2599: [IOI2011]Race( 点分治 )
数据范围是N:20w, K100w. 点分治, 我们只需考虑经过当前树根的方案. K最大只有100w, 直接开个数组CNT[x]表示与当前树根距离为x的最少边数, 然后就可以对根的子树依次dfs并更新 ...
- [IOI2011]Race 点分治
[IOI2011]Race LG传送门 点分治板子题. 直接点分治统计,统计的时候开个桶维护下就好了. 注(tiao)意(le)细(hen)节(jiu). #include<cstdio> ...
- [bzoj2599][IOI2011]Race——点分治
Brief Description 给定一棵带权树,你需要找到一个点对,他们之间的距离为k,且路径中间的边的个数最少. Algorithm Analyse 我们考虑点分治. 对于子树,我们递归处理,所 ...
- 洛谷 4149 [IOI2011]Race——点分治
题目:https://www.luogu.org/problemnew/show/P4149 第一道点分治! 点分治大约是每次找重心,以重心为根做一遍树形dp:然后对于该根的每个孩子,递归下去.递归之 ...
- 洛谷P4149 [IOI2011]Race(点分治)
题目描述 给一棵树,每条边有权.求一条简单路径,权值和等于 KK ,且边的数量最小. 输入输出格式 输入格式: 第一行:两个整数 n,kn,k . 第二至 nn 行:每行三个整数,表示一条无向边的 ...
- P4149 [IOI2011]Race
对于这道题,明显是点分治,权值等于k,可以用桶统计树上路径(但注意要清空); 对于每颗子树,先与之前的子树拼k,再更新桶,维护t["len"]最小边数; #include < ...
- bzoj2599/luogu4149 [IOI2011]Race (点分治)
点分治.WA了一万年. 重点就是统计答案的方法 做法一(洛谷AC bzojWA 自测WA): 做点x时记到x距离为k的边数最小值为dis[k],然后对每一对有值的dis[i]和dis[K-i],给an ...
随机推荐
- 【Docker】:使用docker安装mysql,挂载外部配置和数据
普通安装 1.下载镜像,mysql 5.7 docker pull mysql:5.7 2.创建mysql容器,并后台启动 docker run -d -p 3306:3306 -e MYSQL_US ...
- AlgorithmMap Dev Log
Log 2019.08.29 ------------------------------------------------------------------------------------- ...
- BinaryTree(HDU-5573)【思维/构造】
题目链接:https://vjudge.net/problem/HDU-5573 题意:一棵二叉树,编号代表对应节点的取值,可以走k步,每次走的层数递增,问能够达到N的方案. 思路:首先看一下数据范围 ...
- Python习题002
作业1:判断某一个字符串是否是小数 def is_float(string): string1 = str(string) if string1.count('.') > 1: #检测字符串小数 ...
- Python标准库之sched模块介绍
sched——通用时间调度器 sched模块实现了一个通用事件调度器,在调度器类使用一个延迟函数等待特定的时间,执行任务.同时支持多线程应用程序,在每个任务执行后会立刻调用延时函数,以确保其他线程也能 ...
- PAT(B) 1017 A除以B(Java)
题目链接:1017 A除以B 分析 读取输入的A和B后,保存为字符串.模拟除法运算过程. 不要用BigInteger,因为会超时. 另外字符串经常要扩展(例如:append())的话,不要用Strin ...
- STM32固件库模板下载以及固件库学习方法
固件库模板下载 固件库模板新建过程: 下载我们上节的固件库文件 电脑新建一个文件夹命名为Fwlib-Template,在此文件夹下分别新建DOC Libraries Project User 这四个文 ...
- AES密码算法详解(转自https://www.cnblogs.com/luop/p/4334160.html)
0 AES简介 我们知道数据加密标准(Data Encryption Standard: DES)的密钥长度是56比特,因此算法的理论安全强度是256.但二十世纪中后期正是计算机飞速发展的阶段,元器件 ...
- SIFT算法研究
原创作品,允许转载,转载时请务必以超链接形式标明文章 原始出处 .作者信息和本声明.否则将追究法律责任.http://underthehood.blog.51cto.com/2531780/65835 ...
- @PostConstruct注解原理解析
所有文章 https://www.cnblogs.com/lay2017/p/11478237.html 正文 @PostConstruct注解使用简介 在了解一个东西的原理之前,我们得初步的懂得如何 ...