挺简单的,正好能再复习一遍 $exgcd$~

按照题意一遍一遍模拟即可,注意一下 $pollard-rho$ 中的细节.

#include <ctime>
#include <cmath>
#include <cstdio>
#include <algorithm>
#define ll long long
#define ull unsigned long long
#define setIO(s) freopen(s".in","r",stdin), freopen(s".out","w",stdout)
using namespace std;
ll N,E,C,D,n,P,Q,R;
int array[20]={2,11,13,17,19};
ll exgcd(ll a,ll b,ll &x,ll &y)
{
if(!b)
{
x=1,y=0;
return a;
}
ll ans=exgcd(b,a%b,x,y),tmp=x;
x=y,y=tmp-a/b*y;
return ans;
}
ll mult(ll x,ll y,ll mod)
{
ll tmp=(long double)x/mod*y;
return ((ull)x*y-tmp*mod+mod)%mod;
}
ll qpow(ll base,ll k,ll mod)
{
ll tmp=1;
for(;k;k>>=1,base=mult(base,base,mod)) if(k&1) tmp=mult(tmp,base,mod);
return tmp;
}
int isprime(ll x)
{
if(x<=1) return 1;
int i,j,k;
ll pre,cur,a;
for(cur=x-1,k=0;cur%2==0;cur>>=1) ++k;
for(i=0;i<5;++i)
{
if(x==array[i]) return 1;
a=pre=qpow(array[i],cur,x);
for(j=1;j<=k;++j)
{
a=mult(pre,pre,x);
if(a==1&&pre!=1&&pre!=x-1) return 0;
pre=a;
}
if(a!=1) return 0;
}
return 1;
}
ll F(ll x,ll c,ll mod)
{
return (mult(x,x,mod)+c)%mod;
}
ll pollard_rho(ll x)
{
int step,k;
ll s=0,t=0,c=rand()%(x-1)+1,val=1,d;
for(k=1;;k<<=1,s=t,val=1)
{
for(step=1;step<=k;++step)
{
t=F(t,c,x);
val=mult(val,abs(t-s),x);
if(step%127==0)
{
d=__gcd(val,x);
if(d>1) return d;
}
}
d=__gcd(val,x);
if(d>1) return d;
}
}
void solve_d()
{
for(P=N;P>=N;)
P=pollard_rho(N);
Q=N/P;
R=(P-1)*(Q-1);
ll x,y,gcd;
gcd=exgcd(E,R,x,y);
x=(x+R)%R;
D=x; }
int main()
{
int i,j;
// setIO("input");
srand((unsigned)time(NULL));
scanf("%lld%lld%lld",&E,&N,&C);
for(P=N;P>=N;)
P=pollard_rho(N);
Q=N/P;
R=(P-1)*(Q-1);
ll x,y,gcd;
gcd=exgcd(E,R,x,y);
x=(x+R)%R;
D=x;
n=qpow(C,D,N);
printf("%lld %lld\n",D,n);
return 0;
}

  

BZOJ 4522: [Cqoi2016]密钥破解 exgcd+Pollard-Rho的更多相关文章

  1. BZOJ 4522: [Cqoi2016]密钥破解

    http://www.lydsy.com/JudgeOnline/problem.php?id=4522 题目:给你RSA密钥的公钥和密文,求私钥和原文,其中\(N=pq\le 2^{62}\),p和 ...

  2. BZOJ 4522: [Cqoi2016]密钥破解 (Pollard-Rho板题)

    Pollard-Rho 模板 板题-没啥说的- 求逆元出来后如果是负的记得加回正数 CODE #include<bits/stdc++.h> using namespace std; ty ...

  3. 【Luogu】P4358密钥破解(Pollard Rho)

    题目链接 容易发现如果我们求出p和q这题就差不多快变成一个sb题了. 于是我们就用Pollard Rho算法进行大数分解. 至于这个算法的原理,emmm 其实也不是很清楚啦 #include<c ...

  4. LG4718 【模板】Pollard-Rho算法 和 [Cqoi2016]密钥破解

    Pollard-Rho算法 总结了各种卡常技巧的代码: #define int long long typedef __int128 LL; IN int fpow(int a,int b,int m ...

  5. BZOJ4522:[CQOI2016]密钥破解(Pollard-Rho,exgcd)

    Description 一种非对称加密算法的密钥生成过程如下: 1. 任选两个不同的质数 p ,q 2. 计算 N=pq , r=(p-1)(q-1) 3. 选取小于r ,且与 r 互质的整数 e  ...

  6. BZOJ4522: [Cqoi2016]密钥破解

    pollard's rho模板题. 调参调到160ms无能为力了,应该是写法问题,不玩了. #include<bits/stdc++.h> using namespace std; typ ...

  7. [CQOI2016]密钥破解

    嘟嘟嘟 这题我读了两遍才懂,然后感觉要解什么高次同余方程--然后我又仔细的看了看题,发现只要求得\(p\)和\(q\)就能求出\(r\),继而用exgcd求出\(d\),最后用快速幂求出\(n\). ...

  8. 【BZOJ-4522】密钥破解 数论 + 模拟 ( Pollard_Rho分解 + Exgcd求逆元 + 快速幂 + 快速乘)

    4522: [Cqoi2016]密钥破解 Time Limit: 10 Sec  Memory Limit: 512 MBSubmit: 290  Solved: 148[Submit][Status ...

  9. LibreOJ2045 - 「CQOI2016」密钥破解

    Portal Description 给出三个正整数\(e,N,c(\leq2^{62})\).已知\(N\)能表示成\(p\cdot q\)的形式,其中\(p,q\)为质数.计算\(r=(p-1)( ...

随机推荐

  1. 从入门到自闭之Python--Redis

    什么是Redis Redis是由意大利人Salvatore Sanfilippo(网名:antirez)开发的一款内存高速缓存数据库.Redis全称为:Remote Dictionary Server ...

  2. redis的数据结构及操作命令

    一.字符串: redis中最为基础的存储类型,以二进制存储,value的字符串最多512M,Key做多1024字节. 常用命令:赋值(set).取值(get).删除(del),递增(incr/incr ...

  3. 12 Mysql之工作中常用操作

    Mysql 专题讲解 一.用户创建与权限管理 a)  创建和删除用户 创建用户: CREATE USER jack@localhost; UPDATE USER SET password=passwo ...

  4. Windows 7 系统下显示文件类型的扩展名和隐藏文件

    一.显示扩展名 点击开始菜单 在搜索框中输入「文件夹选项」并单击 切换到「查看」栏,取消勾选「隐藏已知文件类型的扩展名」这一项 设置完成 ps: 你也可以通过单击下图位置进行相应操作来达到同样的效果 ...

  5. php之Opcache

    opcache的原理 1.Opcache是什么? Opcache是一种通过将解析的PHP脚本预编译的字节码(Operate Code)存放在共享内存中来避免每次加载和解析PHP脚本的开销,解析器可以直 ...

  6. git pull文件时和本地文件冲突 方法之一

    1.先将本地修改存储起来 2.pull内容 3.还原暂存的内容 4.解决文件中冲突的的部分 打开 dsa.txt 文件手动解决冲突. 其中Updated upstream 和=====之间的内容就是p ...

  7. 第四篇.python的基础

    目录 第四篇.python基础01 1. 变量 2. 常量 3. python变量内存管理 4. 变量的三个特征 5. 花式赋值 6. 注释 7. 数据类型基础 8. 数字类型 9. 字符串类型 10 ...

  8. Win10带有网络连接的安全模式怎么开启?

    安全模式是在Windows系统中不加载第三方设备驱动程序的情况下启动电脑,从而可以方便的检测与修复电脑系统的错误,比如在安全模式下可以删除某些顽固的文件.查杀病毒.修复系统故障.卸载恶意软件等.不过在 ...

  9. Samba编码设置方法

    弟管理學校的網頁伺服器,該伺服器也同時是大家的分享檔案集散中心,是以Linux架設起來的,該伺服器以 Unicode 作為系統編碼,而其他Windows系統則是big5(MS950)編碼,最近我要讓另 ...

  10. 记一次root用户在本地登录及SSH连接均遭遇permission denied的问题排查经过

    某日一位老师反映,机房的6号节点无法登录了.一开始以为是为节点防火墙配置IP白名单时忘记了加进去,但随后发现此节点并未进行白名单配置,密码也一直未有变更,于是在自己的电脑上连接,发现终端里很快显示出了 ...