The All-purpose Zero

Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 65536/65536 K (Java/Others)
Total Submission(s): 947    Accepted Submission(s): 453

Problem Description
?? gets an sequence S with n intergers(0 < n <= 100000,0<= S[i] <= 1000000).?? has a magic so that he can change 0 to any interger(He does not need to change all 0 to the same interger).?? wants you to help him to find out the length of the longest increasing (strictly) subsequence he can get.
 
Input
The first line contains an interger T,denoting the number of the test cases.(T <= 10)
For each case,the first line contains an interger n,which is the length of the array s.
The next line contains n intergers separated by a single space, denote each number in S.
 
Output
For each test case, output one line containing “Case #x: y”(without quotes), where x is the test case number(starting from 1) and y is the length of the longest increasing subsequence he can get.
 
Sample Input
2
7
2 0 2 1 2 0 5
6
1 2 3 3 0 0
 
Sample Output
Case #1: 5 Case #2: 5

Hint

In the first case,you can change the second 0 to 3.So the longest increasing subsequence is 0 1 2 3 5.

题意: 给你n个数字,你可以将其中的0变成任意数字,求最终能得到的最长严格递增子序列,
#include <cstdio>
#include <cstring>
#include <iostream>
#include <algorithm>
#include <vector>
#include <queue>
#include <set>
#include <map>
#include <string>
#include <cmath>
#include <stdlib.h>
using namespace std;
typedef long long LL;
const int inf=0x3f3f3f3f;
const int mod=1e9+7;
const int N=1e5+10; int a[N],ans[N];
int main()
{
int cas,n,x,kk=0;
scanf("%d",&cas);
while(cas--){
scanf("%d",&n);
int cnt=0,num=0;
for(int i=1;i<=n;i++){
scanf("%d",&x);
if(!x) cnt++;
else a[++num]=x-cnt;
}
if(!num) {
printf("Case #%d: %d\n",++kk,cnt);
continue;
}
int len=1;
ans[1]=a[1];
for(int i=2;i<=num;i++){
if(a[i]>ans[len]) ans[++len]=a[i];
else {
int pos=lower_bound(ans+1,ans+len,a[i])-ans;
ans[pos]=a[i];
}
}
printf("Case #%d: %d\n",++kk,len+cnt);
}
return 0;
}

  0可以转化成任意整数,包括负数,显然求LIS时尽量把0都放进去必定是正确的。因此我们可以把0拿出来,对剩下的做O(nlogn)的LIS,统计结果的时候再算上0的数量。为了保证严格递增,我们可以将每个权值S[i]减去i前面0的个数,再做LIS,就能保证结果是严格递增的。

hdu 5773 最长递增子序列 (nlogn)+贪心的更多相关文章

  1. HDU 5773 最长上升子序列

    题意 给出一个序列 问它的最长严格上升子序列多长 这个序列中的0可以被替代为任何数 n的范围给出了1e5 所以平常的O(n*n)lis不能用了 在kuangbin的模板里有O(nlogn)的模板 套上 ...

  2. 最长递增子序列nlogn的做法

    费了好大劲写完的  用线段树维护的 nlogn的做法再看了一下 大神们写的 nlogn  额差的好远我写的又多又慢  大神们写的又少又快时间  空间  代码量 哪个都赶不上大佬们的代码 //这是我写的 ...

  3. HDU-1160-FatMouse's Speed(DP, 最长递增子序列)

    链接: https://vjudge.net/problem/HDU-1160 题意: FatMouse believes that the fatter a mouse is, the faster ...

  4. HDU 1257 最少拦截系统 最长递增子序列

    HDU 1257 最少拦截系统 最长递增子序列 题意 这个题的意思是说给你\(n\)个数,让你找到他最长的并且递增的子序列\((LIS)\).这里和最长公共子序列一样\((LCS)\)一样,子序列只要 ...

  5. (转载)最长递增子序列 O(NlogN)算法

    原博文:传送门 最长递增子序列(Longest Increasing Subsequence) 下面我们简记为 LIS. 定义d[k]:长度为k的上升子序列的最末元素,若有多个长度为k的上升子序列,则 ...

  6. 最长递增子序列 O(NlogN)算法

    转自:点击打开链接 最长递增子序列,Longest Increasing Subsequence 下面我们简记为 LIS. 排序+LCS算法 以及 DP算法就忽略了,这两个太容易理解了. 假设存在一个 ...

  7. 最长递增子序列 LIS 时间复杂度O(nlogn)的Java实现

    关于最长递增子序列时间复杂度O(n^2)的实现方法在博客http://blog.csdn.net/iniegang/article/details/47379873(最长递增子序列 Java实现)中已 ...

  8. 【LeetCode】300.最长递增子序列——暴力递归(O(n^3)),动态规划(O(n^2)),动态规划+二分法(O(nlogn))

    算法新手,刷力扣遇到这题,搞了半天终于搞懂了,来这记录一下,欢迎大家交流指点. 题目描述: 给你一个整数数组 nums ,找到其中最长严格递增子序列的长度. 子序列是由数组派生而来的序列,删除(或不删 ...

  9. 51nod-1134 最长递增子序列,用线段树将N^2的dp降到NlogN

    题目链接 给出长度为N的数组,找出这个数组的最长递增子序列.(递增子序列是指,子序列的元素是递增的) 例如:5 1 6 8 2 4 5 10,最长递增子序列是1 2 4 5 10. Input 第1行 ...

随机推荐

  1. T100 事务的开始与结束

    例如: IF cl_ask_confirm('apm-00801') THEN CALL s_transaction_begin() IF NOT axmt500_change_xmdc015('u' ...

  2. luogu P2765 魔术球问题 (最小路径覆盖)

    大意:给定n根柱子, 依次放入1,2,3,...的球, 同一根柱子相邻两个球和为完全平方数, 求最多放多少个球. 对和为平方数的点连边, 就相当于求DAG上最小路径覆盖. #include <i ...

  3. Active Learning 主动学习

    Active Learning 主动学习 2015年09月30日 14:49:29 qrlhl 阅读数 21374 文章标签: 算法机器学习 更多 分类专栏: 机器学习   版权声明:本文为博主原创文 ...

  4. Java EE Servlet相关的两个包

    Servlet in Java EE 在Java EE的规范API中(链接),Servlet相关联的最重要的两个Package为: 1.javax.servlet 包含了一系列接口和类,他们在一个Se ...

  5. java——包装类中的equals方法

    基本数据类型包装类中的equals方法用于比对相同包装类中的值是否相等,如果两者比较的包装类类型不同则返回false: Byte public boolean equals(Object obj) { ...

  6. nop4.1学习ServiceCollectionExtensions(二)(ioc,ef,ef连接的实现)

    这个是获取程序路径,并初始化文件管理类 初始化插件管理 接下来就是注册服务和autoafc 在INopStartup配置sql连接,插件,mvc等 配置了sql连接 数据库的配置类 在AddAutoM ...

  7. BZOJ4241历史研究题解--回滚莫队

    题目链接 https://www.lydsy.com/JudgeOnline/problem.php?id=4241 分析 这题就是求区间权值乘以权值出现次数的最大值,一看莫队法块可搞,但仔细想想,莫 ...

  8. StringUtils类API及使用方法详解

    StringUtils类API及使用方法详解 StringUtils方法概览 判空函数 1)StringUtils.isEmpty(String str) 2)StringUtils.isNotEmp ...

  9. 8.Hibernate性能优化

    性能优化 1.注意session.clear() 的运用,尤其在不断分页的时候 a) 在一个大集合中进行遍历,遍历msg,取出其中额含有敏感字样的对象 b) 另外一种形式的内存泄漏( //面试题:Ja ...

  10. Java学习笔记【五、字符串】

    String类 11种构造,不一一列举 常用方法 s.length() 返回字符串长度 s1.contact(s2) 连接s1.s2 String.format("aaa %f bbb %d ...