BZOJ1101——莫比乌斯函数&&入门
题目
有$50000$次查询,对于给定的整数$a,b$和$d$,有多少正整数对$x$和$y$,满足$x \leq a$,$y \leq b$,并且$gcd(x, y)=d$。$1 \leq k \leq a,b \leq 50000$.
分析
求有多少对$(x,y)$满足$x \leq a$,$y \leq b$,并且 $gcd(x, y)=d$,等价于求有多少对$(x, y)$满足$x \leq \frac{a}{d}, y \leq \frac{b}{d}$并且$x, y$互质.
设$D(a, b, d)$表示满足$x \leq a, y \leq b$且$d | gcd(x, y)$的二元组的对数。显然只要$x, y$都是$d$的倍数即可。$1 \sim a$之间$d$的倍数有$\left \lfloor \frac{a}{d} \right \rfloor$个。故$D(a, b, d) = \left \lfloor \frac{a}{d} \right \rfloor \left \lfloor \frac{b}{d} \right \rfloor$.
设$F(a, b)$ 表示满足$x \leq a$,$y \leq b$ 且 $x, y$互质的二元组的对数。根据容斥原理:
$$F(a,b)=\sum_{i=1}^{min(a,b)} \mu(i)*D(a,b,i)$$
上式的意思是,没有任何限制的二元组总数为 $D(a, b, 1)=a*b$,应该减去$gcd(a, b)$是$2,3,5 \cdots$的倍数的二元组数量,这样又重复减掉了$gcd(a, b)$既是$2$的倍数、又是$3$的倍数的二元组数量,应该加回来。依此类推,$D(a, b, i)$的系数恰好就是莫比乌斯函数.
由整除分块的知识,我们知道:$\forall i \in [x, min(\left \lfloor a/ \left \lfloor a/x \right \rfloor \right \rfloor), \left \lfloor b/\left \lfloor b/x \right \rfloor \right \rfloor]$,$D(a,b,i)=\left \lfloor a/i \right \rfloor\left \lfloor b/i \right \rfloor$ 的值都是相等的,预处理出莫比乌斯函数的前缀和,即可直接累加这一段的答案。这样的段只有$O(2\sqrt{min(a,b)})$个.
#include<bits/stdc++.h>
using namespace std; const int maxn = + ;
int miu[maxn],vis[maxn], smiu[maxn]; void getmiu(int n)
{
for(int i=;i <= n;i++) miu[i]=, vis[i];
for(int i=;i <= n;i++)
{
if(vis[i]) continue;
miu[i] = -; //i没有被访问,说明i是素数
for(int j = *i; j <= n;j += i)
{
vis[j] = ;
if(j % (i*i) == ) miu[j] = ; //含有平方因子
else miu[j] *= -;
}
} for(int i = ;i <= n;i++) smiu[i] = smiu[i-] + miu[i];
} int f(int a, int b)
{
int ans = ;
for(int l=, r; l <= min(a, b);l = r+)
{
r = min(a / (a / l), b / (b / l));
ans += (smiu[r] - smiu[l-]) * (a/l) * (b/l); //按段累加
//printf("%d %d\n", l, r);
}
printf("%d\n", ans);
} int main()
{
int T;
scanf("%d", &T);
getmiu(maxn);
//for(int i=1; i <= 20;i++) printf("%d\n", miu[i]);
while(T--)
{
int a, b, k;
scanf("%d%d%d", &a, &b, &k);
f(a/k, b/k);
}
return ;
}
BZOJ1101——莫比乌斯函数&&入门的更多相关文章
- BZOJ 2440: [中山市选2011]完全平方数 [容斥原理 莫比乌斯函数]
2440: [中山市选2011]完全平方数 Time Limit: 10 Sec Memory Limit: 128 MBSubmit: 3028 Solved: 1460[Submit][Sta ...
- 51nod 1244 莫比乌斯函数之和
题目链接:51nod 1244 莫比乌斯函数之和 题解参考syh学长的博客:http://www.cnblogs.com/AOQNRMGYXLMV/p/4932537.html %%% 关于这一类求积 ...
- 51nod 1240 莫比乌斯函数
题目链接:51nod 1240 莫比乌斯函数 莫比乌斯函数学习参考博客:http://www.cnblogs.com/Milkor/p/4464515.html #include<cstdio& ...
- 51nod1244 莫比乌斯函数之和
推公式.f[n]=1-∑f[n/i](i=2...n).然后递归+记忆化搜索.yyl说这叫杜教筛?时间复杂度貌似是O(n 2/3)的? #include<cstdio> #include& ...
- 51nod1240莫比乌斯函数
莫比乌斯函数,由德国数学家和天文学家莫比乌斯提出.梅滕斯(Mertens)首先使用μ(n)(miu(n))作为莫比乌斯函数的记号.(据说,高斯(Gauss)比莫比乌斯早三十年就曾考虑过这个函数). ...
- [BZOJ 2440] [中山市选2011] 完全平方数 【二分 + 莫比乌斯函数】
题目链接:BZOJ - 2440 题目分析 首先,通过打表之类的方法可以知道,答案不会超过 2 * k . 那么我们使用二分,对于一个二分的值 x ,求出 [1, x] 之间的可以送出的数有多少个. ...
- 数学(莫比乌斯函数):BZOJ 2440 完全平方数
Description 小 X 自幼就很喜欢数.但奇怪的是,他十分讨厌完全平方数.他觉得这些 数看起来很令人难受.由此,他也讨厌所有是完全平方数的正整数倍的数.然而 这丝毫不影响他对其他数的热爱. 这 ...
- 51nod 1244 莫比乌斯函数之和(杜教筛)
[题目链接] http://www.51nod.com/onlineJudge/questionCode.html#!problemId=1244 [题目大意] 计算莫比乌斯函数的区段和 [题解] 利 ...
- BZOJ 2440: [中山市选2011]完全平方数( 二分答案 + 容斥原理 + 莫比乌斯函数 )
先二分答案m,<=m的有m-∑(m/pi*pi)+∑(m/pi*pi*pj*pj)-……个符合题意的(容斥原理), 容斥系数就是莫比乌斯函数μ(预处理)... ----------------- ...
随机推荐
- 【转帖】samba的配置文件smb.conf详细说明
samba的配置文件smb.conf详细说明 https://blog.csdn.net/cqboy1991/article/details/9791033 找时间自己写一个blog 说明一下搭建过程 ...
- 关于SQLSERVER登录不了的情况
是这样的,本人为了复制一个数据库文件把默认数据库设置成了脱机状态.在此点击联机的时候SSMS显示重启,重启后在用windows登录显示无法打开默认数据库.用其他不适该默认数据库的账号可以登录.想问一下 ...
- vue开发环境配置跨域,一步到位
本文要实现的是:使用vue-cli搭建的项目在开发时配置跨域,上线后不做任何任何修改,接口也可以访问,前端跨域解决方案 production:产品 生产环境 development:开发 开发环境 1 ...
- 【第一季】CH07_FPGA_RunLED创建VIVADO工程实验
[第一季]CH07_FPGA_RunLED创建VIVADO工程实验 7.1 硬件图片 先来熟悉一下开发板的硬件:LED部分及按钮部分 7.2 硬件原理图 PIN脚定义(讲解以MIZ702讲解,MIZ7 ...
- idea 编辑器Git暂存区的使用
平时在开发时候 一般线上环境和线下环境区别会很大,所以一下线下的自己测试环境的代码没有如果提交会影响线上环境,所以一般都会使用git的一个暂存区作为临时存放不需要提交的代码,这样每次提交代码都可以在不 ...
- c# internal关键字
对于一些大型的项目,通常由很多个DLL文件组成,引用了这些DLL,就能访问DLL里面的类和类里面的方法.比如,你写了一个记录日志的DLL,任何项目只要引用此DLL就能实现记录日志的功能,这个DLL文件 ...
- 用python 打印出爱心
其实,如果程序员真的很浪漫,普通人不懂,科技兴旺,也许你是惊呆了!!!!! 今天,泰泰又给你带来了一个“程序员技术(浪漫)表现”教程.飞鲸水龙头有希望它能在这个七月前夜帮到你.如果使用成功,记得给泰泰 ...
- vue覆盖UI组件样式不生效
检查检查是不是加了scoped 在vue中,我们需要引用子组件,包括ui组件(element.iview). 但是在父组件中添加scoped之后,在父组件中书写子组件的样式是无效果的. 去掉scope ...
- Python3 GUI:PyQt5环境搭建
配置镜像源 最近用Python内置的Thinter写了个小工具,发现界面略朴素,于是决定转向PyQt5.先配置镜像源,否则只能龟速下载. C:\Users\你的用户名下新建目录pip 在pip目录下新 ...
- [转载] 关于CI,CD,jenkins
Jenkins入门(一) https://blog.csdn.net/miss1181248983/article/details/82840006