2301: [HAOI2011]Problem b

Time Limit: 50 Sec Memory Limit: 256 MB

Description

对于给出的n个询问,每次求有多少个数对(x,y),满足a≤x≤b,c≤y≤d,且gcd(x,y) = k,gcd(x,y)函数为x和y的最大公约数。

Input

第一行一个整数n,接下来n行每行五个整数,分别表示a、b、c、d、k

Output

共n行,每行一个整数表示满足要求的数对(x,y)的个数

Sample Input

2

2 5 1 5 1

1 5 1 5 2

Sample Output

14

3

HINT

100%的数据满足:1≤n≤50000,1≤a≤b≤50000,1≤c≤d≤50000,1≤k≤50000

/*
莫比乌斯反演.
好吧这题比上一题简单.
然后容斥的话用二维矩阵想一想就行了.
一开始推式子的时候把推错了一个取值 (打手.
最后是这个东西∑(min(n/k,m/k),d=1)mu[d]*[n/kd][m/kd].
朴素是O(n/k)的,用除法分块优化以后可以降到O(2√n).
用cout输出BZOJ判 Wrong 不知道为啥.
*/
#include<iostream>
#include<cstdio>
#define MAXN 50001
#define LL long long
using namespace std;
int t,a,b,c,d,k,tot,last,mu[MAXN],pri[MAXN];
LL ans,sum[MAXN];
bool vis[MAXN];
void pre()
{
mu[1]=1;
for(int i=2;i<=MAXN-1;i++)
{
if(!vis[i]) vis[i]=true,pri[++tot]=i,mu[i]=-1;
for(int j=1;j<=tot&&i*pri[j]<=MAXN-1;j++)
{
vis[i*pri[j]]=true;
if(i%pri[j]) mu[i*pri[j]]=-mu[i];
else {mu[i*pri[j]]=0;break;}
}
}
for(int i=1;i<=MAXN-1;i++) sum[i]=sum[i-1]+mu[i];
}
LL slove(LL n,LL m)
{
ans=0;n/=k,m/=k;
for(LL i=1;i<=min(n,m);i=last+1)
{
last=min(n/(n/i),m/(m/i));
ans+=(n/i)*(m/i)*(sum[last]-sum[i-1]);
}
return ans;
}
int main()
{
pre();
scanf("%d",&t);
while(t--)
{
scanf("%d%d%d%d%d",&a,&b,&c,&d,&k);
printf("%lld\n",slove(b,d)-slove(b,c-1)-slove(a-1,d)+slove(a-1,c-1));
}
return 0;
}

Bzoj 2301: [HAOI2011]Problem b(莫比乌斯反演+除法分块)的更多相关文章

  1. BZOJ 2301: [HAOI2011]Problem b 莫比乌斯反演

    2301: [HAOI2011]Problem b Time Limit: 50 Sec  Memory Limit: 256 MBSubmit: 1007  Solved: 415[Submit][ ...

  2. BZOJ.2301.[HAOI2011]Problem B(莫比乌斯反演 容斥)

    [Update] 我好像现在都看不懂我当时在写什么了=-= \(Description\) 求\(\sum_{i=a}^b\sum_{j=c}^d[(i,j)=k]\) \(Solution\) 首先 ...

  3. BZOJ 2301 [HAOI2011]Problem b ——莫比乌斯反演

    分成四块进行计算,这是显而易见的.(雾) 然后考虑计算$\sum_{i=1}^n|sum_{j=1}^m gcd(i,j)=k$ 首先可以把n,m/=k,就变成统计&i<=n,j< ...

  4. Bzoj 2820: YY的GCD(莫比乌斯反演+除法分块)

    2820: YY的GCD Time Limit: 10 Sec Memory Limit: 512 MB Description 神犇YY虐完数论后给傻×kAc出了一题给定N, M,求1<=x& ...

  5. bzoj 2301: [HAOI2011]Problem b mobius反演 RE

    http://www.lydsy.com/JudgeOnline/problem.php?id=2301 设f(i)为在区间[1, n]和区间[1, m]中,gcd(x, y) = i的个数. 设F( ...

  6. [BZOJ 2820] YY的gcd(莫比乌斯反演+数论分块)

    [BZOJ 2820] YY的gcd(莫比乌斯反演+数论分块) 题面 给定N, M,求\(1\leq x\leq N, 1\leq y\leq M\)且gcd(x, y)为质数的(x, y)有多少对. ...

  7. BZOJ 2301 [HAOI2011]Problem b (分块 + 莫比乌斯反演)

    2301: [HAOI2011]Problem b Time Limit: 50 Sec  Memory Limit: 256 MBSubmit: 6519  Solved: 3026[Submit] ...

  8. BZOJ 2301: [HAOI2011]Problem b (莫比乌斯反演)

    2301: [HAOI2011]Problem b Time Limit: 50 Sec  Memory Limit: 256 MBSubmit: 436  Solved: 187[Submit][S ...

  9. BZOJ2301: [HAOI2011]Problem b[莫比乌斯反演 容斥原理]【学习笔记】

    2301: [HAOI2011]Problem b Time Limit: 50 Sec  Memory Limit: 256 MBSubmit: 4032  Solved: 1817[Submit] ...

随机推荐

  1. PB笔记之数据窗口大小自适应的方式

    1.在OPEN 事件中设置数据窗口大小属性 tab_1.tabpage_6.dw_6.x=0tab_1.tabpage_6.dw_6.y=0tab_1.tabpage_6.dw_6.width=thi ...

  2. 微信小程序使用 iconfont

    小程序中使用 iconfont 在 iconfont.cn 中下载图标库, 直接将其中的 iconfont.css 复制到小程序目录中,并将扩展名改为 wxss: 在使用时在对应的样式文件 wxss ...

  3. java 线程并发(生产者、消费者模式)

    线程并发协作(生产者/消费者模式) 多线程环境下,我们经常需要多个线程的并发和协作.这个时候,就需要了解一个重要的多线程并发协作模型“生产者/消费者模式”. Ø 什么是生产者? 生产者指的是负责生产数 ...

  4. git 修改注释

    原文:https://www.jianshu.com/p/098d85a58bf1 修改最后一条注释: git commit --amend 如果已经推送到远程,强制push到远程仓库: git pu ...

  5. ubuntu环境下pycharm编译程序import包出错:ImportError: dynamic module does not define init function (init_caffe)

    出错原因是因为pycharm中的python版本不对,比如程序为2.7版本,但是pycharm编解释器为python3,导致出错,去setting改一下版本就行:pycharm>file> ...

  6. iOS - 数据存储方式(本地化)

    iOS中数据存储方式 一般使用以下4种:(已更新) .NSKeyedAchiever//序列化 存放对象 .NSUserDefaults//本质是plist存储 NSData.NSString.NSN ...

  7. vue-cli项目开发运行时内存暴涨卡死电脑

    最近开发一个vue项目时遇到电脑卡死问题,突然间系统就非常卡,然后卡着卡着就死机了,鼠标也动不了了,只能冷启动.而且因为是突然卡死,没来得及打开任务管理器. 最开始以为是硬盘的问题,但是在卡死几次后, ...

  8. MonkeyRunner——Mac

    1. MonkeyRunner介绍: Android的SDK中集成了三个可用来进行自动化测试的工具:Monkey.MonkeyRunner和Robotium.这三个测试工具都是基于黑盒测试. Monk ...

  9. Oracle数据库账户口令复杂度-等保测评之身份鉴别

    1.     默认情况下数据库没有启用密码验证函数功能,可通过下面sql查询 SQL> select limit from dba_profiles where RESOURCE_NAME='P ...

  10. 你的系统需要SMB2或者更高版本,才能访问共享