P5431 【模板】乘法逆元2
洛谷题目链接
刚开始做乘法逆元还是有点懵逼的~
以下式子都在模\(p\)意义下进行
我们把式子改一下,变成:$$\sum\limits_{i=1}nki\times a_i^{-1}$$
我们先算出\(a_i\)的前缀积:$$s[i]=s[i-1]\times a_i$$
我们发现只要算出每一个前缀积的逆元\(t_i\),每一个\(a_i\)的逆元都好求了:$$a_i^{-1}=t_i\times s_{i-1}$$
那么怎么求每一个前缀积的逆元呢,我们可以先把$t_n运用费马小定理求出来: $$t_n=s_n^{p-2}$$
再根据:$$t_i=t_{i+1}*a_{i+1}$$
递推出所有的\(t\)
这样就把所有的逆元\(O(n)\)求出来了,我们再把原式变形:$$a_1{-1}k1+a_2{-1}k2+\cdots+a_{n-1}{-1}k{n-1}+a_n{-1}kn$$
\]
我们就可以\(O(n)\)求出答案啦~~~
接下来是美滋滋的代码时间~~~(必须用快读。。)
#include<iostream>
#include<cstdio>
#include<cmath>
#define int long long
#define N 5000007
using namespace std;
int n,p,k;
int s[N],a[N],inv_s[N];
int Read()
{
int fu=1,ret=0;
char c=getchar();
while(c<'0'||c>'9')
{
if(c=='-')
fu=-1;
c=getchar();
}
while(c>='0'&&c<='9')
{
ret=(ret<<3)+(ret<<1)+c-'0';
c=getchar();
}
return ret*fu;
}
int qpow(int a,int b)
{
int ans=1,res=a;
while(b)
{
if(b&1)
ans=(ans*res)%p;
res=(res*res)%p;
b/=2;
}
return ans%p;
}
signed main()
{
n=Read(),p=Read(),k=Read();
s[0]=1;
for(int i=1;i<=n;++i)
{
a[i]=Read();
s[i]=(s[i-1]*a[i])%p;
}
inv_s[n]=qpow(s[n],p-2);
for(int i=n-1;i>=1;--i)
inv_s[i]=(inv_s[i+1]*a[i+1])%p;
int ans=0;
for(int i=n;i>=1;--i)
ans=((inv_s[i]*s[i-1])%p+ans)*k%p;
printf("%lld\n",(ans+p)%p);
return 0;
}
P5431 【模板】乘法逆元2的更多相关文章
- 【洛谷P3811】[模板]乘法逆元
乘法逆元 题目链接 求逆元的三种方式: 1.扩欧 i*x≡1 (mod p) 可以化为:x*i+y*p=1 exgcd求x即可 inline void exgcd(int a,int b,int &a ...
- 逆元-P3811 【模板】乘法逆元-洛谷luogu
https://www.cnblogs.com/zjp-shadow/p/7773566.html -------------------------------------------------- ...
- P3811 【模板】乘法逆元
P3811 [模板]乘法逆元 线性递推逆元模板 #include<iostream> #include<cstdio> #include<cstring> #def ...
- [洛谷P3811]【模板】乘法逆元
P3811 [模板]乘法逆元 题意 求1-n所有整数在模p意义下的逆元. 分析 逆元 如果x满足\(ax=1(\%p)\)(其中a p是给定的数)那么称\(x\)是在\(%p\)意义下\(a\)的逆元 ...
- 模板【洛谷P3811】 【模板】乘法逆元
P3811 [模板]乘法逆元 给定n,p求1~n中所有整数在模p意义下的乘法逆元. T两个点的费马小定理求法: code: #include <iostream> #include < ...
- luogu P3811 【模板】乘法逆元
题目背景 这是一道模板题 题目描述 给定n,p求1~n中所有整数在模p意义下的乘法逆元. 输入输出格式 输入格式: 一行n,p 输出格式: n行,第i行表示i在模p意义下的逆元. 输入输出样例 输入样 ...
- 洛谷 P3811 【模板】乘法逆元
P3811 [模板]乘法逆元 题目背景 这是一道模板题 题目描述 给定n,p求1~n中所有整数在模p意义下的乘法逆元. 输入输出格式 输入格式: 一行n,p 输出格式: n行,第i行表示i在模p意义下 ...
- 洛谷——P3811 【模板】乘法逆元
P3811 [模板]乘法逆元 线性求逆元 逆元定义:若$a*x\equiv1 (\bmod {b})$,且$a$与$b$互质,那么我们就能定义: $x$为$a$的逆元,记为$a^{-1}$,所以我们也 ...
- 洛谷—— P3811 【模板】乘法逆元
https://www.luogu.org/problem/show?pid=3811 题目背景 这是一道模板题 题目描述 给定n,p求1~n中所有整数在模p意义下的乘法逆元. 输入输出格式 输入格式 ...
随机推荐
- 小程序的目录结构/配置介绍/视图层wxml数据绑定/双线程模型/小程序的启动流程
安装好微信小程序开发软件,创建项目 小程序文件结构和传统web对比 结构 传统web 微信小程序 结构 HTML WXML 样式 CSS WXSS 逻辑 Javascript Javascript 配 ...
- 1010 Radix:猥琐的测试数据
谨以此题纪念边界测试数据浪费了我多少时间:https://pintia.cn/problem-sets/994805342720868352/problems/994805507225665536 # ...
- Cortex_m7内核cache深入了解和应用
一,cache概述 从下图可以看出,从M7内核才开始有的cache,这对于从M0,M3,M4一路走来的小伙伴来说,多了一个cache就多了一个障碍. Cortex-M7 core with 32K/3 ...
- [Luogu5327][ZJOI2019]语言(树上差分+线段树合并)
首先可以想到对每个点统计出所有经过它的链的并所包含的点数,然后可以直接得到答案.根据实现不同有下面几种方法.三个log:假如对每个点都存下经过它的链并S[x],那么每新加一条路径进来的时候,相当于在路 ...
- Broom |tidy up a bit,模型,检验结果一键输出!
本文首发于“生信补给站”公众号,https://mp.weixin.qq.com/s/TqFk66F2gUu_k8WEjKbLtA 更多关于R语言,ggplot2绘图,生信分析的内容,敬请关注小号. ...
- PEB TEB结构体使用
PEB TEB结构体使用一个可执行文件被OS加载到内存,并处理完成相关的模块加载,导入表处理……及其他必须处理后,形成一个进程.在OS内核中保存有一份关于这个进程的身份证信息,就是平常看到的HANDL ...
- 使用docker搭建reids主从,哨兵。
Redis主从配置,如果没有真机就要用虚拟机,使用Docke for Windows host网络有问题. 准备: 1.安装虚拟机. 2.下载redis的安装文件:http://download.re ...
- python OpenCV使用
关于OpenCV简介 OpenCV是一个基于BSD许可(开源)发行的跨平台计算机视觉库,可以运行在Linux.Windows.Android和Mac OS操作系统上.它轻量级而且高效——由一系列 C ...
- C#基础 - 定义变量,输入输出
本节课主要讲解C#的发展历史及部分C#语言基础, 主要内容有:控制台程序的创建,输出,输入,定义变量,变量赋值,值覆盖,值拼接,值 打印,两种数据类型,整形类型转换 本节重点难点:定义变量 ...
- Nginx+PHP负载均衡集群环境中Session共享方案 - 运维笔记
在网站使用nginx+php做负载均衡情况下,同一个IP访问同一个页面会被分配到不同的服务器上,如果session不同步的话,就会出现很多问题,比如说最常见的登录状态. 下面罗列几种nginx负载均衡 ...