图像识别领域的一些code
图像识别领域的一些code
转自:http://blog.163.com/pz124578@126/blog/static/23522694201343110495537/
ps:里面的一些方法都是目前最新的。每个领域当然可以做大量扩充,根据需要嘛。
Non-exhaustive list of state-of-the-art implementations related to visual recognition and search. There is no warranty for the source code links below – use them at your own risk!
Feature Detection and Description
General Libraries:
- VLFeat – Implementation of various feature descriptors (including SIFT, HOG, and LBP) and covariant feature detectors (including DoG, Hessian, Harris Laplace, Hessian Laplace, Multiscale Hessian, Multiscale Harris). Easy-to-use Matlab interface. SeeModern features: Software – Slides providing a demonstration of VLFeat and also links to other software. Check also VLFeat hands-on session training
- OpenCV – Various implementations of modern feature detectors and descriptors (SIFT, SURF, FAST, BRIEF, ORB, FREAK, etc.)
Fast Keypoint Detectors for Real-time Applications:
- FAST – High-speed corner detector implementation for a wide variety of platforms
- AGAST – Even faster than the FAST corner detector. A multi-scale version of this method is used for the BRISK descriptor (ECCV 2010).
Binary Descriptors for Real-Time Applications:
- BRIEF – C++ code for a fast and accurate interest point descriptor (not invariant to rotations and scale) (ECCV 2010)
- ORB – OpenCV implementation of the Oriented-Brief (ORB) descriptor (invariant to rotations, but not scale)
- BRISK – Efficient Binary descriptor invariant to rotations and scale. It includes a Matlab mex interface. (ICCV 2011)
- FREAK – Faster than BRISK (invariant to rotations and scale) (CVPR 2012)
SIFT and SURF Implementations:
- SIFT: VLFeat, OpenCV, Original code by David Lowe, GPU implementation, OpenSIFT
- SURF: Herbert Bay’s code, OpenCV, GPU-SURF
Other Local Feature Detectors and Descriptors:
- VGG Affine Covariant features – Oxford code for various affine covariant feature detectors and descriptors.
- LIOP descriptor – Source code for the Local Intensity order Pattern (LIOP) descriptor (ICCV 2011).
- Local Symmetry Features – Source code for matching of local symmetry features under large variations in lighting, age, and rendering style (CVPR 2012).
Global Image Descriptors:
- GIST – Matlab code for the GIST descriptor
- CENTRIST – Global visual descriptor for scene categorization and object detection (PAMI 2011)
Feature Coding and Pooling
- VGG Feature Encoding Toolkit – Source code for various state-of-the-art feature encoding methods – including Standard hard encoding, Kernel codebook encoding, Locality-constrained linear encoding, and Fisher kernel encoding.
- Spatial Pyramid Matching – Source code for feature pooling based on spatial pyramid matching (widely used for image classification)
Convolutional Nets and Deep Learning
- EBLearn – C++ Library for Energy-Based Learning. It includes several demos and step-by-step instructions to train classifiers based on convolutional neural networks.
- Torch7 – Provides a matlab-like environment for state-of-the-art machine learning algorithms, including a fast implementation of convolutional neural networks.
- Deep Learning - Various links for deep learning software.
Part-Based Models
- Deformable Part-based Detector – Library provided by the authors of the original paper (state-of-the-art in PASCAL VOC detection task)
- Efficient Deformable Part-Based Detector – Branch-and-Bound implementation for a deformable part-based detector.
- Accelerated Deformable Part Model – Efficient implementation of a method that achieves the exact same performance of deformable part-based detectors but with significant acceleration (ECCV 2012).
- Coarse-to-Fine Deformable Part Model – Fast approach for deformable object detection (CVPR 2011).
- Poselets – C++ and Matlab versions for object detection based on poselets.
- Part-based Face Detector and Pose Estimation – Implementation of a unified approach for face detection, pose estimation, and landmark localization (CVPR 2012).
Attributes and Semantic Features
- Relative Attributes – Modified implementation of RankSVM to train Relative Attributes (ICCV 2011).
- Object Bank – Implementation of object bank semantic features (NIPS 2010). See also ActionBank
- Classemes, Picodes, and Meta-class features – Software for extracting high-level image descriptors (ECCV 2010, NIPS 2011, CVPR 2012).
Large-Scale Learning
- Additive Kernels – Source code for fast additive kernel SVM classifiers (PAMI 2013).
- LIBLINEAR – Library for large-scale linear SVM classification.
- VLFeat – Implementation for Pegasos SVM and Homogeneous Kernel map.
Fast Indexing and Image Retrieval
- FLANN – Library for performing fast approximate nearest neighbor.
- Kernelized LSH – Source code for Kernelized Locality-Sensitive Hashing (ICCV 2009).
- ITQ Binary codes – Code for generation of small binary codes using Iterative Quantization and other baselines such as Locality-Sensitive-Hashing (CVPR 2011).
- INRIA Image Retrieval – Efficient code for state-of-the-art large-scale image retrieval (CVPR 2011).
Object Detection
- See Part-based Models and Convolutional Nets above.
- Pedestrian Detection at 100fps – Very fast and accurate pedestrian detector (CVPR 2012).
- Caltech Pedestrian Detection Benchmark – Excellent resource for pedestrian detection, with various links for state-of-the-art implementations.
- OpenCV – Enhanced implementation of Viola&Jones real-time object detector, with trained models for face detection.
- Efficient Subwindow Search – Source code for branch-and-bound optimization for efficient object localization (CVPR 2008).
3D Recognition
- Point-Cloud Library – Library for 3D image and point cloud processing.
Action Recognition
- ActionBank – Source code for action recognition based on the ActionBank representation (CVPR 2012).
- STIP Features – software for computing space-time interest point descriptors
- Independent Subspace Analysis – Look for Stacked ISA for Videos (CVPR 2011)
- Velocity Histories of Tracked Keypoints - C++ code for activity recognition using the velocity histories of tracked keypoints (ICCV 2009)
Datasets
Attributes
- Animals with Attributes – 30,475 images of 50 animals classes with 6 pre-extracted feature representations for each image.
- aYahoo and aPascal – Attribute annotations for images collected from Yahoo and Pascal VOC 2008.
- FaceTracer – 15,000 faces annotated with 10 attributes and fiducial points.
- PubFig – 58,797 face images of 200 people with 73 attribute classifier outputs.
- LFW – 13,233 face images of 5,749 people with 73 attribute classifier outputs.
- Human Attributes – 8,000 people with annotated attributes. Check also this link for another dataset of human attributes.
- SUN Attribute Database – Large-scale scene attribute database with a taxonomy of 102 attributes.
- ImageNet Attributes – Variety of attribute labels for the ImageNet dataset.
- Relative attributes – Data for OSR and a subset of PubFig datasets. Check also this link for the WhittleSearch data.
- Attribute Discovery Dataset – Images of shopping categories associated with textual descriptions.
Fine-grained Visual Categorization
- Caltech-UCSD Birds Dataset – Hundreds of bird categories with annotated parts and attributes.
- Stanford Dogs Dataset – 20,000 images of 120 breeds of dogs from around the world.
- Oxford-IIIT Pet Dataset – 37 category pet dataset with roughly 200 images for each class. Pixel level trimap segmentation is included.
- Leeds Butterfly Dataset – 832 images of 10 species of butterflies.
- Oxford Flower Dataset – Hundreds of flower categories.
Face Detection
- FDDB – UMass face detection dataset and benchmark (5,000+ faces)
- CMU/MIT – Classical face detection dataset.
Face Recognition
- Face Recognition Homepage – Large collection of face recognition datasets.
- LFW – UMass unconstrained face recognition dataset (13,000+ face images).
- NIST Face Homepage – includes face recognition grand challenge (FRGC), vendor tests (FRVT) and others.
- CMU Multi-PIE – contains more than 750,000 images of 337 people, with 15 different views and 19 lighting conditions.
- FERET – Classical face recognition dataset.
- Deng Cai’s face dataset in Matlab Format – Easy to use if you want play with simple face datasets including Yale, ORL, PIE, and Extended Yale B.
- SCFace – Low-resolution face dataset captured from surveillance cameras.
Handwritten Digits
- MNIST – large dataset containing a training set of 60,000 examples, and a test set of 10,000 examples.
Pedestrian Detection
- Caltech Pedestrian Detection Benchmark – 10 hours of video taken from a vehicle,350K bounding boxes for about 2.3K unique pedestrians.
- INRIA Person Dataset – Currently one of the most popular pedestrian detection datasets.
- ETH Pedestrian Dataset – Urban dataset captured from a stereo rig mounted on a stroller.
- TUD-Brussels Pedestrian Dataset – Dataset with image pairs recorded in an crowded urban setting with an onboard camera.
- PASCAL Human Detection – One of 20 categories in PASCAL VOC detection challenges.
- USC Pedestrian Dataset – Small dataset captured from surveillance cameras.
Generic Object Recognition
- ImageNet – Currently the largest visual recognition dataset in terms of number of categories and images.
- Tiny Images – 80 million 32x32 low resolution images.
- Pascal VOC – One of the most influential visual recognition datasets.
- Caltech 101 / Caltech 256 – Popular image datasets containing 101 and 256 object categories, respectively.
- MIT LabelMe – Online annotation tool for building computer vision databases.
Scene Recognition
- MIT SUN Dataset – MIT scene understanding dataset.
- UIUC Fifteen Scene Categories – Dataset of 15 natural scene categories.
Feature Detection and Description
- VGG Affine Dataset – Widely used dataset for measuring performance of feature detection and description. CheckVLBenchmarksfor an evaluation framework.
Action Recognition
- Benchmarking Activity Recognition – CVPR 2012 tutorial covering various datasets for action recognition.
RGBD Recognition
- RGB-D Object Dataset – Dataset containing 300 common household objects
Related Courses
- Visual Recognition - Kristen Grauman, U. Texas, Fall 2012.
- The Cutting Edge of Computer Vision - Fei-Fei Li, Stanford, Spring 2011.
- Learning-based Methods in Vision - Alyosha Efros and Leonid Sigal, CMU, Spring 2012.
- Grounding Object Recognition and Scene Understanding - Antonio Torralba, MIT, Fall 2011.
图像识别领域的一些code的更多相关文章
- Code First :使用Entity. Framework编程(5) ----转发 收藏
第五章 对数据库映射使用默认规则与配置 到目前为止我们已经领略了Code First的默认规则与配置对属性.类间关系的影响.在这两个领域内,Code First不仅影响模型也影响数据库.在这一章,你将 ...
- 【译著】Code First :使用Entity. Framework编程(5)
第五章 对数据库映射使用默认规则与配置 到目前为止我们已经领略了Code First的默认规则与配置对属性.类间关系的影响.在这两个领域内,Code First不仅影响模型也影响数据库.在这一章,你将 ...
- 使用pytorch完成kaggle猫狗图像识别
kaggle是一个为开发商和数据科学家提供举办机器学习竞赛.托管数据库.编写和分享代码的平台,在这上面有非常多的好项目.好资源可供机器学习.深度学习爱好者学习之用.碰巧最近入门了一门非常的深度学习框架 ...
- CV界的明星人物们
CV界的明星人物们 来自:http://blog.csdn.net/necrazy/article/details/9380151,另外根据自己关注的地方,加了点东西. 今天在cvchina论坛上看到 ...
- Deep Learning(深度学习)学习笔记整理
申明:本文非笔者原创,原文转载自:http://www.sigvc.org/bbs/thread-2187-1-3.html 4.2.初级(浅层)特征表示 既然像素级的特征表示方法没有作用,那怎样的表 ...
- paper 92:图像视觉博客资源2之MIT斯坦福CMU
收录的图像视觉(也包含机器学习等)领域的博客资源的第二部分,包含:美国MIT.斯坦福.CMU三所高校 1)这些名人大家一般都熟悉,本文仅收录了包含较多资料的个人博客,并且有不少更新,还有些名人由于分享 ...
- (转) OpenCV学习笔记大集锦 与 图像视觉博客资源2之MIT斯坦福CMU
首页 视界智尚 算法技术 每日技术 来打我呀 注册 OpenCV学习笔记大集锦 整理了我所了解的有关OpenCV的学习笔记.原理分析.使用例程等相关的博文.排序不分先后,随机整理的 ...
- 【转载】Deep Learning(深度学习)学习笔记整理
http://blog.csdn.net/zouxy09/article/details/8775360 一.概述 Artificial Intelligence,也就是人工智能,就像长生不老和星际漫 ...
- 深度学习算法实践15---堆叠去噪自动编码机(SdA)原理及实现
我们讨论了去噪自动编码机(dA),并讨论了Theano框架实现的细节.在本节中,我们将讨论去噪自动编码机(dA)的主要应用,即组成堆叠自动编码机(SdA),我们将以MNIST手写字母识别为例,用堆叠自 ...
随机推荐
- hibernate的各种查询
Hibernate Query Language(HQL)Criteria QueryNative SQL下面对其分别进行解释select子句:有时并不需要取得对象的所有属性,这时可以使用select ...
- ubuntu系统调整时区和时间
date: 2019-05-30 10:14:23 author:headsen chen 个人原创博客,转录需要注明作者和出处. 1,安装ntpdate,同步标准时间 root@hk-confl ...
- Java面试之http知识点(必问)
Java面试之http知识点(必问) 版权声明:本文为博主原创文章,遵循CC 4.0 by-sa版权协议,转载请附上原文出处链接和本声明. 本文链接:https://blog.csdn.net/q ...
- 005-tomcat日志体系
一.概述 首先了解java的日志体系 在JDK1.4后,sun公司增加了一个包为java.util.logging,简称为jul,用以对抗log4j. 后续还有很多日志门面方案,但是tomcat使用了 ...
- iOS中NSTimer的使用
1.初始化 + (NSTimer *)timerWithTimeInterval:(NSTimeInterval)ti target:(id)aTarget selector:(SEL)aSelect ...
- 123456---com.twoapp.xiaoxiaozuqiujiang---小小足球将
com.twoapp.xiaoxiaozuqiujiang---小小足球将
- CRM-项目记录
硬件篇 阵列R5 3个盘才能做R5阵列,还需要单独的一个SSD硬盘做系统盘 软件篇 跨域问题 SPRINGMVC 配置了跨域,也使用了跨域注解,但是依然不能解决问题 最后通过直接修改TOMCAT的WE ...
- PHP实现简单留言板
最近学习了下PHP基础,这里做一个简单的留言板,算是对PHP和MySQL的使用做一个整体的练习吧,不遇到问题总感觉学不到东西. 截图如下: 总结: 1>数据库的简单操作,数据库的增删改查: 2. ...
- Zabbix部分监控指标
MySQL请求流量带宽.MySQL响应流量带宽.CPU使用率.内存利用率.网卡流量等.
- Matlab给曲线添加加参考线
声明:引用请注明出处http://blog.csdn.net/lg1259156776/ 对于Matlab的使用情况常常是这样子的,很多零碎的函数名字很难记忆,经常用过后过一段时间就又忘记了,又得去网 ...