题意

  \(n\) 个点 \(m\) 条边的无向图,\(k\) 次询问保留图中编号在 \([l,r]\) 的边的时候图中的联通块个数。强制在线。
  \(n,m,k\le 2\times 10^5\)

题解

  LCT 练习题,和这题有得一比
  对于一组询问 \(l,r\),考虑每一条编号在 \([l,r]\) 的编号为 \(i\) 的边 \((u,v)\) 什么时候会造成贡献:不加在 \([1,l-1]\) 的边,从小到大加入编号在 \([l,i-1]\) 的边,\(u\) 和 \(v\) 在两个不同的连通块中。
  那怎么判断加入这条边前, \(u,v\) 是否在两个不同的连通块中?考虑先不删编号在 \([1,l-1]\) 的边,找一条 \(u,v\) 两点间编号最小的边的编号最大的路径,若这条路径上编号最小的边的编号\(\ge l\),则 \(u,v\) 在同一连通块中,否则在不同连通块中。
  问题就在于如何求这条路径,当然我们只需要这条路径上编号最小的边的编号
  这个可以用经典的贪心 + LCT。用一棵 LCT 维护动态 MST,按编号从小到大依次把边加入 LCT,若加边前两端已经连通,则取这两点在 MST 上的路径上编号最小的一条边,把它删掉换成现在加入的这条边即可。记录一下这条边换掉的边的编号 \(lst_i\)。若加边前两端不连通,则换掉的边的编号记为 \(0\)。
  这样就求出了每条边在加入前,其两端 \(u,v\) 是否在不同的连通块中。
  若加入一条边前,其两端点 \(u,v\) 不在同一连通块中,则加入这条边后连通块数 \(-1\)。
  则询问的答案就是 \(n - \sum\limits_{i=l}^r [lst_i<l]\),主席树维护即可。

【BZOJ 3514】Codechef MARCH14 GERALD07 加强版的更多相关文章

  1. BZOJ 3514: Codechef MARCH14 GERALD07加强版( LCT + 主席树 )

    从左到右加边, 假如+的边e形成环, 那么记下这个环上最早加入的边_e, 当且仅当询问区间的左端点> _e加入的时间, e对答案有贡献(脑补一下). 然后一开始是N个连通块, 假如有x条边有贡献 ...

  2. BZOJ 3514: Codechef MARCH14 GERALD07加强版 [LCT 主席树 kruskal]

    3514: Codechef MARCH14 GERALD07加强版 Time Limit: 60 Sec  Memory Limit: 256 MBSubmit: 1312  Solved: 501 ...

  3. [BZOJ 3514]Codechef MARCH14 GERALD07加强版 (CHEF AND GRAPH QUERIES)

    [BZOJ3514] Codechef MARCH14 GERALD07加强版 (CHEF AND GRAPH QUERIES) 题意 \(N\) 个点 \(M\) 条边的无向图,\(K\) 次询问保 ...

  4. BZOJ 3514 Codechef MARCH14 GERALD07加强版

    题目链接:http://www.lydsy.com:808/JudgeOnline/problem.php?id=3514 题意:给出一个图m条边.每次询问只加入编号在区间[L,R]之内的边有多少连通 ...

  5. BZOJ 3514: Codechef MARCH14 GERALD07加强版(LCT + 主席树)

    题意 \(N\) 个点 \(M\) 条边的无向图,询问保留图中编号在 \([l,r]\) 的边的时候图中的联通块个数. \(K\) 次询问强制在线. \(1\le N,M,K \le 200,000\ ...

  6. 【刷题】BZOJ 3514 Codechef MARCH14 GERALD07加强版

    Description N个点M条边的无向图,询问保留图中编号在[l,r]的边的时候图中的联通块个数. Input 第一行四个整数N.M.K.type,代表点数.边数.询问数以及询问是否加密. 接下来 ...

  7. BZOJ 3514 Codechef MARCH14 GERALD07加强版 Link-Cut-Tree+划分树

    题目大意: 给定n个点m条边的无向图.求问当图中仅仅有[编号在[l,r]区间内]的边存在时图中的联通块个数 强制在线 注意联通块是指联通了就是同一块,不是Tarjan求的那种块 看到这题的那一刻我就想 ...

  8. BZOJ 3514: Codechef MARCH14 GERALD07加强版 (LCT维护最大生成树+主席树)

    题意 给出nnn个点,mmm条边.多次询问,求编号在[l,r][l,r][l,r]内的边形成的联通块的数量,强制在线. 分析 LCTLCTLCT维护动态最大生成树,先将每条边依次加进去,若形成环就断掉 ...

  9. 【BZOJ-3514】Codechef MARCH14 GERALD07加强版 LinkCutTree + 主席树

    3514: Codechef MARCH14 GERALD07加强版 Time Limit: 60 Sec  Memory Limit: 256 MBSubmit: 1288  Solved: 490 ...

  10. 【LCT+主席树】BZOJ3514 Codechef MARCH14 GERALD07加强版

    3514: Codechef MARCH14 GERALD07加强版 Time Limit: 60 Sec  Memory Limit: 256 MBSubmit: 2023  Solved: 778 ...

随机推荐

  1. 创建vue 项目

    sudo npm install -g @vue/cli-init vue init webpack my-project cd my-project/ npm install npm run dev

  2. elasticsearch 7.1 401 Unauthorized

    1.执行curl -XGET 'localhost:9200/_cat/indices?v&pretty'  报401 2.修改配置xpack.security.enabled: false ...

  3. JS 获取当前定位

    <!DOCTYPE html> <html lang="en"> <head> <meta charset="UTF-8&quo ...

  4. PYTHON 100days学习笔记004:循环结构

    目录 Day04 - 循环结构 1. 循环结构的应用场景 2.for-in循环 3. while循环 4. 练习 4.1 输入一个数判断是不是素数. 4.2 输入两个正整数,计算最大公约数和最小公倍数 ...

  5. navicat 使用 pymysql模块

    新健库 ,新增字段+类型+约束 设计表:外键(自增) 新建查询 建立表模型 /* 数据导入: Navicat Premium Data Transfer Source Server : localho ...

  6. charindex函数的用法

    例一: CustomName包含客户的First Name和Last Name,它们之间被一个空格隔开.我们用CHARINDX函数确定两个名字中间空格的位置.通过这个方法,我们可以分析ContactN ...

  7. X86逆向6:易语言程序的DIY

    易语言程序在中国的用户量还是很大的,广泛用于外挂的开发,和一些小工具的编写,今天我们就来看下如何给易语言程序DIY,这里是用的易语言演示,当然这门技术也是可以应用到任何一门编译型语言中的,只要掌握合适 ...

  8. how to Simply Singleton Navigate the deceptively simple Singleton pattern---reference

    http://www.javaworld.com/article/2073352/core-java/simply-singleton.html JAVA DESIGN PATTERNS By Dav ...

  9. audio隐藏下载按钮

    // 这个方法只支持 Chrome 58+, 低于该版本的是没有无法隐藏的 <audio src="/i/horse.ogg" controls="controls ...

  10. 2-Perl 环境安装

    1.Perl 环境安装在我们开始学习 Perl 语言前,我们需要先安装 Perl 的执行环境.Perl 可以在以下平台下运行:Unix (Solaris, Linux, FreeBSD, AIX, H ...