import numpy as np
from keras.datasets import mnist
from keras.utils import np_utils
from keras.models import Sequential
from keras.layers import Dense,Dropout,Convolution2D,MaxPooling2D,Flatten
from keras.optimizers import Adam
# 载入数据
(x_train,y_train),(x_test,y_test) = mnist.load_data()
# (60000,28,28)->(60000,28,28,1)
x_train = x_train.reshape(-1,28,28,1)/255.0
x_test = x_test.reshape(-1,28,28,1)/255.0
# 换one hot格式
y_train = np_utils.to_categorical(y_train,num_classes=10)
y_test = np_utils.to_categorical(y_test,num_classes=10) # 定义顺序模型
model = Sequential() # 第一个卷积层
# input_shape 输入平面
# filters 卷积核/滤波器个数
# kernel_size 卷积窗口大小
# strides 步长
# padding padding方式 same/valid
# activation 激活函数
model.add(Convolution2D(
input_shape = (28,28,1),
filters = 32,
kernel_size = 5,
strides = 1,
padding = 'same',
activation = 'relu'
))
# 第一个池化层
model.add(MaxPooling2D(
pool_size = 2,
strides = 2,
padding = 'same',
))
# 第二个卷积层
model.add(Convolution2D(64,5,strides=1,padding='same',activation = 'relu'))
# 第二个池化层
model.add(MaxPooling2D(2,2,'same'))
# 把第二个池化层的输出扁平化为1维
model.add(Flatten())
# 第一个全连接层
model.add(Dense(1024,activation = 'relu'))
# Dropout
model.add(Dropout(0.5))
# 第二个全连接层
model.add(Dense(10,activation='softmax')) # 定义优化器
adam = Adam(lr=1e-4) # 定义优化器,loss function,训练过程中计算准确率
model.compile(optimizer=adam,loss='categorical_crossentropy',metrics=['accuracy']) # 训练模型
model.fit(x_train,y_train,batch_size=64,epochs=10) # 评估模型
loss,accuracy = model.evaluate(x_test,y_test) print('test loss',loss)
print('test accuracy',accuracy)

8.CNN应用于手写字识别的更多相关文章

  1. 用TensorFlow教你手写字识别

    博主原文链接:用TensorFlow教你做手写字识别(准确率94.09%) 如需转载,请备注出处及链接,谢谢. 2012 年,Alex Krizhevsky, Geoff Hinton, and Il ...

  2. (五) Keras Adam优化器以及CNN应用于手写识别

    视频学习来源 https://www.bilibili.com/video/av40787141?from=search&seid=17003307842787199553 笔记 Adam,常 ...

  3. knn算法手写字识别案例

    import pandas as pd import numpy as np import matplotlib.pyplot as plt import os from sklearn.neighb ...

  4. tensorflow卷积神经网络与手写字识别

    1.知识点 """ 基础知识: 1.神经网络(neural networks)的基本组成包括输入层.隐藏层.输出层.而卷积神经网络的特点在于隐藏层分为卷积层和池化层(po ...

  5. Tensorflow实践:CNN实现MNIST手写识别模型

    前言 本文假设大家对CNN.softmax原理已经比较熟悉,着重点在于使用Tensorflow对CNN的简单实践上.所以不会对算法进行详细介绍,主要针对代码中所使用的一些函数定义与用法进行解释,并给出 ...

  6. tensorflow神经网络与单层手写字识别

    1.知识点 """ 1.基础知识: 1.神经网络结构:1.输入层 2.隐含层 3.全连接层(类别个数=全连接层神经元个数)+softmax函数 4.输出层 2.逻辑回归: ...

  7. 基于PyTorch实现MNIST手写字识别

    本篇不涉及模型原理,只是分享下代码.想要了解模型原理的可以去看网上很多大牛的博客. 目前代码实现了CNN和LSTM两个网络,整个代码分为四部分: Config:项目中涉及的参数: CNN:卷积神经网络 ...

  8. TensorFlow 入门之手写识别CNN 三

    TensorFlow 入门之手写识别CNN 三 MNIST 卷积神经网络 Fly 多层卷积网络 多层卷积网络的基本理论 构建一个多层卷积网络 权值初始化 卷积和池化 第一层卷积 第二层卷积 密集层连接 ...

  9. 【PDF】手写字与识别字重叠

    [PDF]手写字与识别字重叠 前言 同学平时上课用iPad记笔记,考试之前导出为PDF发给我后,我用PDF打开,发现可以直接Ctrl+F搜索一些词语.一直不知道是怎么做到的,毕竟里面的字都是手写的,不 ...

随机推荐

  1. python之pandas学习笔记-pandas数据结构

    pandas数据结构 pandas处理3种数据结构,它们建立在numpy数组之上,所以运行速度很快: 1.系列(Series) 2.数据帧(DataFrame) 3.面板(Panel) 关系: 数据结 ...

  2. BiLSTM-CRF模型理解

    适用任务 中文分词.词性标注.命名实体识别是自然语言理解中,基础性的工作,同时也是非常重要的工作. 在很多NLP的项目中,工作开始之前都要经过这三者中的一到多项工作的处理. 在深度学习中,有一种模型可 ...

  3. 在学习python的Django\Flask\Tornado前你需要知道的,what is web?

    我们都在讲web开发web开发,那到底什么是web呢? 如果你正在学习python三大主流web框架,那这些你必须要知道了 软件开发架构: C/S架构:Client/Server    客户端与服务端 ...

  4. TestNG使用教程详解(接口测试用例编写与断言)

    版权声明:本文为博主原创文章,遵循 CC 4.0 BY-SA 版权协议,转载请附上原文出处链接和本声明. 本文链接:https://blog.csdn.net/sinat_34766121/artic ...

  5. 【Python】【demo实验19】【练习实例】【不同位数相同阿拉伯数字组成的数之和】

    原题: 求s=a+aa+aaa+aaaa+aa...a的值,其中a是一个数字.例如2+22+222+2222+22222(此时共有5个数相加),几个数相加由键盘控制. 我的代码: #!/usr/bin ...

  6. [转帖]PostgreSQL的用户、角色和权限管理

    PostgreSQL的用户.角色和权限管理 2018年05月18日 14:02:29 jerry-89 阅读数 6143 https://blog.csdn.net/eagle89/article/d ...

  7. SQL SERVER DATENAME函数

    定义: DATENAME函数返回指定日期的指定部分. 语法: DATENAME(datepart,date) 参数: ①datepart 参数可以是下列的值: datepart 缩写 年(Year) ...

  8. spark-初阶①(介绍+RDD)

    spark-初阶①(介绍+RDD) Spark是什么? Apache Spark 是一个快速的, 多用途的集群计算系统, 相对于 Hadoop MapReduce 将中间结果保存在磁盘中, Spark ...

  9. oracle数据库基于(streams流复制)的双机热备配置手册

    ------------------------------------------------------------------------------- 主数据库: 操作系统:windows 2 ...

  10. 前端 CSS 2

    无序列表去除自带的样式 <!DOCTYPE html> <html lang="en"> <head> <meta charset=&qu ...