BZOJ4241历史研究题解--回滚莫队
题目链接
https://www.lydsy.com/JudgeOnline/problem.php?id=4241
分析
这题就是求区间权值乘以权值出现次数的最大值,一看莫队法块可搞,但仔细想想,莫队的加入很容易,但是删除需要维护许多东西,非常麻烦,于是就有dalao想出了一个新科技--回滚莫队.回滚莫队能使操作全部变成加入或全部变成删除.这道题我们需要全部变成加入.
怎么做呢?我们对询问进行处理,左端点在一个块中的先归在一起,然后以右端点为关键字进行排序,使得右端点靠前的在前.然后依次处理按左端点归好后每个块中的询问,我们找到块中最靠后的左端点,和最靠前的右端点(其实就是块中第一个询问的右端点),统计区间信息。
对于每一个询问,先移动右端点加入元素,然后左端点左移得到询问答案后再向右移撤销,由于不需要维护什么信息撤销变得非常容易.简单来说,总的思路就是先找出最“窄”的区间,然后不断加入补全到询问区间.
当然,如果询问的左端点和右端点在一个块中就直接暴力处理
代码
#include <cstdio>
#include <cstdlib>
#include <iostream>
#include <cctype>
#include <cstring>
#include <algorithm>
#include <vector>
#include <cmath>
#include <map>
#define LL long long
#define ri register int
using std::min;
using std::max;
using std::vector;
using std::map;
template <class T>inline void read(T &x){
x=0;int ne=0;char c;
while(!isdigit(c=getchar()))ne=c=='-';
x=c-48;
while(isdigit(c=getchar()))x=(x<<3)+(x<<1)+c-48;x=ne?-x:x;
return ;
}
struct Qur{
int l,r,id;
Qur(int a,int b,int c){l=a,r=b,id=c;}
bool operator <(const Qur & b)const {
return r<b.r;
}
};
const int maxn=100005;
const int maxb=355;
const int inf=0x7fffffff;
int n,w[maxn],pos[maxn];
int blo,mxl[maxb];
map <int,int> g;int tot=0,f[maxn];
int cnt[maxn];
LL res=inf,ans[maxn];
vector <Qur> qry[maxb];
inline void add(int x){
cnt[x]++;
res=max(res,1ll*cnt[x]*f[x]);
}
int main(){
int l,r,q;
read(n);read(q);
blo=sqrt(n+0.5);
memset(mxl,0,sizeof(mxl));
for(ri i=1;i<=n;i++){
read(w[i]);
if(!g[w[i]]){
g[w[i]]=++tot;
f[tot]=w[i];
}w[i]=g[w[i]];
pos[i]=(i-1)/blo+1;
}
for(ri i=1;i<=q;i++){
read(l),read(r);
if(pos[l]==pos[r]){//左端点右端点在一个块中
res=-inf;
memset(cnt,0,sizeof(cnt));
for(ri j=l;j<=r;j++)add(w[j]);
for(ri j=l;j<=r;j++)cnt[j]--;
ans[i]=res;
}
else{
qry[pos[l]].push_back(Qur(l,r,i));
mxl[pos[l]]=max(mxl[pos[l]],l);//记录询问块中的最后左端点
}
}
int ll,rr;LL last;
for(ri i=1;i<=pos[n];i++){//处理每个询问块
if(qry[i].empty())continue;
memset(cnt,0,sizeof(cnt));res=-inf;
sort(qry[i].begin(),qry[i].end());
l=mxl[i],r=qry[i][0].r;
for(ri j=l;j<=r;j++)add(w[j]);
for(ri j=0;j<qry[i].size();j++){
ll=qry[i][j].l,rr=qry[i][j].r;
while(r<rr)r++,add(w[r]);
last=res;//记录下右端点操作后信息
for(ri k=ll;k<l;k++)add(w[k]);
ans[qry[i][j].id]=res,res=last;//左端点左移后撤回
for(ri k=ll;k<l;k++)cnt[w[k]]--;//已经得到答案,撤回非常容易
}
}
for(ri i=1;i<=q;i++)printf("%lld\n",ans[i]);
return 0;
}
后记
关于这题的离散化处理,我还进行了一些比较,在这篇博客中
https://rye-catcher.github.io/2018/07/15/学习笔记-几种离散化方式/
推荐学习博客
http://isrothy.blog.uoj.ac/blog/3673
BZOJ4241历史研究题解--回滚莫队的更多相关文章
- 2018.08.14 bzoj4241: 历史研究(回滚莫队)
传送们 简单的回滚莫队,调了半天发现排序的时候把m达成了n... 代码: #include<bits/stdc++.h> #define N 100005 #define ll long ...
- bzoj4241: 历史研究(回滚莫队)
传送门 这是一个叫做回滚莫队的神奇玩意儿 是询问,而且不强制在线,就决定是你了莫队 如果是每次插入一个数是不是很简单? 然而悲剧的是我们莫队的时候不仅要插入数字还要删除数字 那么把它变成只插入不就行了 ...
- BZOJ4241 历史研究 【回滚莫队】
题目描述:给出一个长度为\(n\)的数组,每次询问区间 \([l,r]\),求 \(\max\limits_{x}x*cnt_x\),其中 \(cnt_x\) 表示 \(x\) 在区间 \([l,r] ...
- 【BZOJ4241】历史研究(回滚莫队)
题目: BZOJ4241 分析: 本校某些julao乱膜的时候发明了个"回滚邹队",大概意思就是某个姓邹的太菜了进不了省队回滚去文化课 回滚莫队裸题qwq(话说这个名字是不是莫队本 ...
- BZOJ4241:历史研究(回滚莫队)
题意:给定N个数字,Q次询问,询问这个区间的最大加权众数是多少. 加权众数是指出现次数*数字大小.N,Q<1e5. 思路:不难发现可以N*sqrtN*logN的思路做,但是应该过不了. 这个Ns ...
- bzoj4241/AT1219 历史研究(回滚莫队)
bzoj4241/AT1219 历史研究(回滚莫队) bzoj它爆炸了. luogu 题解时间 我怎么又在做水题. 就是区间带乘数权众数. 经典回滚莫队,一般对于延长区间简单而缩短区间难的莫队题可以考 ...
- BZOJ4241:历史研究(回滚莫队)
Description IOI国历史研究的第一人——JOI教授,最近获得了一份被认为是古代IOI国的住民写下的日记.JOI教授为了通过这份日记来研究古代IOI国的生活,开始着手调查日记中记载的事件. ...
- BZOJ.4241.历史研究(回滚莫队 分块)
题目链接 \(Description\) 长度为n的数列,m次询问,每次询问一段区间最大的 \(A_i*tm_i\) (重要度*出现次数) \(Solution\) 好像可以用莫队做,但是取max的操 ...
- 「JOISC 2014 Day1」历史研究 --- 回滚莫队
题目又臭又长,但其实题意很简单. 给出一个长度为\(N\)的序列与\(Q\)个询问,每个询问都对应原序列中的一个区间.对于每个查询的区间,设数\(X_{i}\)在此区间出现的次数为\(Sum_{X_{ ...
随机推荐
- antd源码分析之——对话框(modal)
目录 一.组件结构 1.antd代码结构 2.rc-ant代码结构 3.组件结构 二.antd组件调用关系及功能详解 1.Model.tsx 2.confirm 三.rc-dialog详解 1.e.t ...
- CPU排行-台式
此文已经于2017年11月1日更新!来源于极速空间 实际对比: intel i3-7100(双核四线程) CPU性能远超过 AMD X4 860K(四核四线程) intel i5-7500(四核四线程 ...
- Permission权限大全
访问登记属性 android.permission.ACCESS_CHECKIN_PROPERTIES ,读取或写入登记check-in数据库属性表的权限 获取错略位置 android.permiss ...
- 怎么用php实现短信验证码发送
我在在众多的第三方短信服务商里选择了云片网这个短信服务商,我也会尽可能利用最简单的方式去帮助广大开发者解决短信验证码功能模块的实现. 再次之前我也参考了大部分网上的博客等,大多数都是把云片网的demo ...
- 京东商城跨域设置Cookie实现SSO单点登陆过程
可以先看下这边文章:http://blog.chinaunix.net/uid-25508399-id-3431705.html 1.点击首页的登陆按钮跳转到京东的登陆中心https://pass ...
- 线程池使用Callable示例【我】
实际工作中可以把下面的代码直接拿过去改改即可 package threadtest; import java.util.ArrayList; import java.util.HashMap; imp ...
- ssm整合用到的依赖jar包(不充足)
<!--spring 的核心的jar包--><dependency> <groupId>org.springframework</groupId> &l ...
- weblogic12.1.3部署应用程序
weblogic12.1.3部署应用程序请参照:https://www.cnblogs.com/xdp-gacl/p/4143413.html
- 树莓派(Linux)添加USB外接硬盘
1.显示系统的硬盘设备以及分区 sudo fdisk -l 显示设备名,例如/dev/sda1 2.树莓派默认不支持NTFS文件系统,如果需要支持则要安装相应的软件包 sudo apt-get ins ...
- dozer转化对象
依赖: commons-beanutils-1.9.3.jar.commons-lang-2.6.jar.dozer-5.3.2.jar.jcl-over-slf4j-1.7.25.jar.slf4j ...