CF1053E Euler tour
题意
给出一个某些位置不全的欧拉序,求出一个符合条件的,或输出不行
传送门
\(n \le 5*10^5\)
思路
终于不是一道神仙\(dp\)
变成了一道神仙构造
以下简称两相同数围成的是一个区间,基本性质:
- 两个相同数之间的长度为奇数
- 头尾一定相同
- 区间要么完全包含要么不相交
- 某段区间内已确定的落单的数一定小于区间\(0\)的个数\(+1\),因为一个落单的数除了叶子总得再配一个
- 对任意一棵大小为\(x\)的子树,序列长度为\(2x-1\)
首先区间不相交就让我们可以分治搞下去,先递归到最小的区间处理,然后处理完此区间对答案就没有影响了,可以直接删掉(浓缩成一个根节点代替整个子树),具体就是维护一下前驱和后继循环时一段一段跳就好了。
接着要考虑最小的区间怎么办了。考虑一下填完后确定的数一定是\(\lfloor \frac{区间长度+1}2 \rfloor\),那么首先从前往后在多出来的空格填未出现过的数字。
接着就开始了,形如\(120\)或\(021\)的,只要填成\(121\),也就是我们要不停的找如\(xy0\)或\(0xy\)的某三个数,并且填完后把它们当做只有\(2\)也就是父亲节点就好了。
如果还有是没填的怎么办呢?发现当前区间的父亲可以用来分割两个区间。
例如填完后变成了\(1[20304]1\)括号表示当前区间,无法用前面的方法再来填,那就可以用\(1\)来填补剩下的空格变为\(1213141\)
#include <bits/stdc++.h>
using std::deque;
const int N=1000100;
int suf[N],pre[N],Next[N],last[N],c[N],a[N],n,m,now;
struct note{
int x,p;
};
deque <note> q;
void endd(){
puts("no");
exit(0);
}
void del(int x,int y){
suf[x]=suf[y];
pre[suf[y]]=x;
}
int get(){
while (c[now]) now++;
if (now>n) endd();
c[now]=1;
return now;
}
void solve(int l,int r){
if (r<l) return;
if ((r-l)&1) endd();
for (int i=l;i<=r;i=suf[i]){
if (!a[i]) continue;
while (Next[i]){
int to=Next[i];
if (to>r) endd();
solve(suf[i],pre[to]);
del(i,to);
Next[i]=Next[to];
}
}
int sum=0,sum0=0;
for (int i=l;i<=r;i=suf[i]){
sum+=(a[i]>0);
sum0+=(!a[i]);
}
if (sum0<sum-1) endd();
for (int i=l;i<=r && sum0>sum;i=suf[i])
if (!a[i]) a[i]=get(),sum0--,sum++;
int rt=a[pre[l]];
for (int i=l;suf[i]<=r;i=suf[i]){
while (i>l && suf[i]<=r && a[i] && a[suf[i]] && (!a[pre[i]])){
a[pre[i]]=a[suf[i]];
del(pre[i],suf[i]);
i=pre[pre[i]];
}
while (i>=l && suf[suf[i]]<=r && a[i] && a[suf[i]] && (!a[suf[suf[i]]])){
a[suf[suf[i]]]=a[i];
del(i,suf[suf[i]]);
i=pre[i];
}
}
for (int i=l;i<=r;i=suf[i])
if (!a[i]) a[i]=rt;
}
int main(){
scanf("%d",&n);
m=2*n-1;
for (int i=1;i<=m;i++) scanf("%d",&a[i]),c[a[i]]++;
if (a[1]!=a[2*n-1] && a[1] && a[2*n-1]) endd();
a[1]=a[m]=(a[1]|a[m]);
for (int i=m;i>=1;i--)
Next[i]=last[a[i]],last[a[i]]=i;
now=1;
suf[0]=1;
for (int i=1;i<=m;i++) pre[i]=i-1,suf[i]=i+1;
solve(1,m);
puts("yes");
for (int i=1;i<=m;i++) printf("%d ",a[i]);
}
后记
神仙啊,其实我还是不怎么懂
CF1053E Euler tour的更多相关文章
- CF1053E Euler tour 构造
正解:构造 解题报告: 传送门! 这种题目一般都是首先考虑合法性 这题也不例外,思考怎么样是合法的呢? 有四点: 1)a[1]=a[2n-1],显然不说 2)若a[i]=a[j],则(j-i)& ...
- 【CF1053E】Euler tour
[CF1053E]Euler tour 题面 CF 洛谷 大概意思是你有一棵树,然而你并不知道这棵树是啥.给你一个确定了一些位置的欧拉序(就是\(ST\)表求\(LCA\)的那个序列),问你是否存在一 ...
- Euler Tour Tree与dynamic connectivity
Euler Tour Tree最大的优点就是可以方便的维护子树信息,这点LCT是做不到的.为什么要维护子树信息呢..?我们可以用来做fully dynamic connectivity(online) ...
- 2018.09.25 codeforces1053E. Euler tour(并查集+st表+模拟)
传送门 毒瘤细节题. 首先考虑不合法的情况. 先把相同的值配对,这样就构成了一些区间. 那么如果这些区间有相交的话,就不合法了. 如何判断?DZYO安利了一波st表,我觉得很不错. 接着考虑两个相同的 ...
- poj1637--Sightseeing tour(最大流)
最大流求混合图是否存在欧拉回路. 以下内容摘自http://www.cnblogs.com/Missa/archive/2012/12/05/2803107.html 讲的很清楚. 混合图的欧拉回路问 ...
- uva10735 Euler Circuit
题外话:很多混合图问题可以转化为有向图问题(将无向边拆为两条有向边) 本题不行,因为只能经过一次 这种问题能想到网络流.. 复习欧拉回路:入度==出度 和uva1380有点相似,要先给无向边定向.原图 ...
- Range Minimum Query and Lowest Common Ancestor
作者:danielp 出处:http://community.topcoder.com/tc?module=Static&d1=tutorials&d2=lowestCommonAnc ...
- GDKOI2015 Day1
P1 题目描述: 判断一个环形字符串(或者减去一个字符之后)是否是回文串 solution: 1.hash 将字符串的前缀进行hash,然后将字符串翻转,再做一次hash,然后枚举对称轴,判断两边的h ...
- 混合欧拉回路的判断(Dinic)
POJ1637 Sightseeing tour Time Limit: 1000MS Memory Limit: 10000K Total Submissions: 7483 Accepte ...
随机推荐
- 调用顺丰API实现电商专递下单和获取面单功能
参考文章:https://www.cnblogs.com/zhangxiaoyong/p/8317229.html 顺丰需求文档: 链接:https://pan.baidu.com/s/16EEaph ...
- Abp 领域事件简单实践 <二>
上一篇说的是仓储增删改 的时候会自动触发领域事件. 其实也可以随时触发. 现在在应用层触发. 应用层依赖注入 EventBus public void Trigger() { var e = new ...
- XML-RPC-2RPC
远程过程调用协议 RPC一般指远程过程调用协议 RPC(Remote Procedure Call)—远程过程调用,它是一种通过网络从远程计算机程序上请求服务,而不需要了解底层网络技术的协议.RPC协 ...
- SSRF(服务端请求伪造)
- vs Code编辑器智能提示功能
一.Node.Js的Typings工具可以用于Visual Studio Code的代码补全 1.vscode 的默认只有es原声api带有自动补全的功能,现在V1.9的版本默认已经支持NodeJS的 ...
- canvas验证码实现
1 <!DOCTYPE html> <html> <!-- head --> <head> <meta charset="utf-8&q ...
- 使用帅气的cordic算法进行坐标系互转及log10的求解
参考博客 https://blog.csdn.net/u010712012/article/details/77755567 https://blog.csdn.net/Reborn_Lee/arti ...
- JFrame windowbuiler的使用基础
一.通过windowbuilder创建java项目: New --Other--windowbuilder--SWT Designer --SWT/JFace Java Project 二.创建文件 ...
- Ajax长连接和SignalR(刷新客户端数据)的区别
ajax实现长连接 <%@ page language="java" import="java.util.*" pageEncoding=" ...
- 读HTTP权威指南的体会
国庆期间,我读了HTTP权威指南一书,现在我把总节为大家讲一下: Web 浏览器.服务器和相关的Web 应用程序都是通过HTTP 相互通信的.HTTP 是 现代全球因特网中使用的公共语言. 是对HTT ...