题意

给出一个某些位置不全的欧拉序,求出一个符合条件的,或输出不行

传送门

\(n \le 5*10^5\)

思路

终于不是一道神仙\(dp\)

变成了一道神仙构造

以下简称两相同数围成的是一个区间,基本性质:

  1. 两个相同数之间的长度为奇数
  2. 头尾一定相同
  3. 区间要么完全包含要么不相交
  4. 某段区间内已确定的落单的数一定小于区间\(0\)的个数\(+1\),因为一个落单的数除了叶子总得再配一个
  5. 对任意一棵大小为\(x\)的子树,序列长度为\(2x-1\)

首先区间不相交就让我们可以分治搞下去,先递归到最小的区间处理,然后处理完此区间对答案就没有影响了,可以直接删掉(浓缩成一个根节点代替整个子树),具体就是维护一下前驱和后继循环时一段一段跳就好了。

接着要考虑最小的区间怎么办了。考虑一下填完后确定的数一定是\(\lfloor \frac{区间长度+1}2 \rfloor\),那么首先从前往后在多出来的空格填未出现过的数字。

接着就开始了,形如\(120\)或\(021\)的,只要填成\(121\),也就是我们要不停的找如\(xy0\)或\(0xy\)的某三个数,并且填完后把它们当做只有\(2\)也就是父亲节点就好了。

如果还有是没填的怎么办呢?发现当前区间的父亲可以用来分割两个区间。

例如填完后变成了\(1[20304]1\)括号表示当前区间,无法用前面的方法再来填,那就可以用\(1\)来填补剩下的空格变为\(1213141\)

#include <bits/stdc++.h>
using std::deque;
const int N=1000100;
int suf[N],pre[N],Next[N],last[N],c[N],a[N],n,m,now;
struct note{
int x,p;
};
deque <note> q;
void endd(){
puts("no");
exit(0);
}
void del(int x,int y){
suf[x]=suf[y];
pre[suf[y]]=x;
}
int get(){
while (c[now]) now++;
if (now>n) endd();
c[now]=1;
return now;
}
void solve(int l,int r){
if (r<l) return;
if ((r-l)&1) endd();
for (int i=l;i<=r;i=suf[i]){
if (!a[i]) continue;
while (Next[i]){
int to=Next[i];
if (to>r) endd();
solve(suf[i],pre[to]);
del(i,to);
Next[i]=Next[to];
}
}
int sum=0,sum0=0;
for (int i=l;i<=r;i=suf[i]){
sum+=(a[i]>0);
sum0+=(!a[i]);
}
if (sum0<sum-1) endd();
for (int i=l;i<=r && sum0>sum;i=suf[i])
if (!a[i]) a[i]=get(),sum0--,sum++;
int rt=a[pre[l]];
for (int i=l;suf[i]<=r;i=suf[i]){
while (i>l && suf[i]<=r && a[i] && a[suf[i]] && (!a[pre[i]])){
a[pre[i]]=a[suf[i]];
del(pre[i],suf[i]);
i=pre[pre[i]];
}
while (i>=l && suf[suf[i]]<=r && a[i] && a[suf[i]] && (!a[suf[suf[i]]])){
a[suf[suf[i]]]=a[i];
del(i,suf[suf[i]]);
i=pre[i];
}
}
for (int i=l;i<=r;i=suf[i])
if (!a[i]) a[i]=rt;
}
int main(){
scanf("%d",&n);
m=2*n-1;
for (int i=1;i<=m;i++) scanf("%d",&a[i]),c[a[i]]++;
if (a[1]!=a[2*n-1] && a[1] && a[2*n-1]) endd();
a[1]=a[m]=(a[1]|a[m]);
for (int i=m;i>=1;i--)
Next[i]=last[a[i]],last[a[i]]=i;
now=1;
suf[0]=1;
for (int i=1;i<=m;i++) pre[i]=i-1,suf[i]=i+1;
solve(1,m);
puts("yes");
for (int i=1;i<=m;i++) printf("%d ",a[i]);
}

后记

神仙啊,其实我还是不怎么懂

CF1053E Euler tour的更多相关文章

  1. CF1053E Euler tour 构造

    正解:构造 解题报告: 传送门! 这种题目一般都是首先考虑合法性 这题也不例外,思考怎么样是合法的呢? 有四点: 1)a[1]=a[2n-1],显然不说 2)若a[i]=a[j],则(j-i)& ...

  2. 【CF1053E】Euler tour

    [CF1053E]Euler tour 题面 CF 洛谷 大概意思是你有一棵树,然而你并不知道这棵树是啥.给你一个确定了一些位置的欧拉序(就是\(ST\)表求\(LCA\)的那个序列),问你是否存在一 ...

  3. Euler Tour Tree与dynamic connectivity

    Euler Tour Tree最大的优点就是可以方便的维护子树信息,这点LCT是做不到的.为什么要维护子树信息呢..?我们可以用来做fully dynamic connectivity(online) ...

  4. 2018.09.25 codeforces1053E. Euler tour(并查集+st表+模拟)

    传送门 毒瘤细节题. 首先考虑不合法的情况. 先把相同的值配对,这样就构成了一些区间. 那么如果这些区间有相交的话,就不合法了. 如何判断?DZYO安利了一波st表,我觉得很不错. 接着考虑两个相同的 ...

  5. poj1637--Sightseeing tour(最大流)

    最大流求混合图是否存在欧拉回路. 以下内容摘自http://www.cnblogs.com/Missa/archive/2012/12/05/2803107.html 讲的很清楚. 混合图的欧拉回路问 ...

  6. uva10735 Euler Circuit

    题外话:很多混合图问题可以转化为有向图问题(将无向边拆为两条有向边) 本题不行,因为只能经过一次 这种问题能想到网络流.. 复习欧拉回路:入度==出度 和uva1380有点相似,要先给无向边定向.原图 ...

  7. Range Minimum Query and Lowest Common Ancestor

    作者:danielp 出处:http://community.topcoder.com/tc?module=Static&d1=tutorials&d2=lowestCommonAnc ...

  8. GDKOI2015 Day1

    P1 题目描述: 判断一个环形字符串(或者减去一个字符之后)是否是回文串 solution: 1.hash 将字符串的前缀进行hash,然后将字符串翻转,再做一次hash,然后枚举对称轴,判断两边的h ...

  9. 混合欧拉回路的判断(Dinic)

    POJ1637 Sightseeing tour Time Limit: 1000MS   Memory Limit: 10000K Total Submissions: 7483   Accepte ...

随机推荐

  1. 听课笔记--DP--最大子矩阵和

    最大子矩阵问题 给定一个n*n(0<n<=120)的矩阵, 矩阵内元素有正有负, 请找到此矩阵的内部元素和最大的子矩阵 样例输入: 4 0 -2 -7  0  9  2 -6  2  -4 ...

  2. 漏洞预警 | ThinkPHP 5.x远程命令执行漏洞

    ThinkPHP采用面向对象的开发结构和MVC模式,融合了Struts的思想和TagLib(标签库).RoR的ORM映射和ActiveRecord模式,是一款兼容性高.部署简单的轻量级国产PHP开发框 ...

  3. javamail "535 5.7.3 Authentication unsuccessful" 问题排查

    有一家odm的服务器用Javamail发邮件的时候报错  Authentication unsuccessful  其他的有些又是正常的 网上查了一下解决方法如下 JavaMailSenderImpl ...

  4. 获取select标签的自定义属性

    $("#ddlUsers").find("option:selected").attr("fullstr"); fullstr就是自定义属性 ...

  5. 参数化查询防止Sql注入

    拼接sql语句会造成sql注入,注入演示 namespace WindowsFormsApp1 { public partial class Form1 : Form { public Form1() ...

  6. 惊呆!Java程序员等级一览

      凡人:买本书凑凑热闹,听得多写的少,过段时间就把老师教的都忘了.这个阶段是刷掉人最多的阶段,也是从凡人到程序员本质区别的阶段.你的日后成就在于你的习惯与态度.隔一段时间整理自己的知识体系是重中之重 ...

  7. ln -s vs mount --bind

    First ,Symlinks and bind mounts are a whole different ballgame. ln -s you create a symbolic link,whi ...

  8. Windows工作原理

    Windows工作原理中心思想 Windows工作原理的中心思想就是“动态链接”概念.Windows自身带有一大套函数,应用程序就是通过调用这些函数来实现它的用户界面和在屏幕上显示文本与图形的.这些函 ...

  9. 若干简单的进程和作业调度的C++模拟程序

    进程调度(时间片轮转,动态优先级,链表形式): #include<cstdio> #include<cstdlib> struct PCB { ]; char state; / ...

  10. git rev-list 按照时间来列出两个 commit id 之间的相差数

    git rev-list 按照时间来列出两个 commit id 之间的相差数 git rev-list: Lists commit objects in reverse chronological ...