HDU 5816 Hearthstone 概率dp
题目链接:
http://acm.hdu.edu.cn/showproblem.php?pid=5816
Hearthstone
Time Limit: 2000/1000 MS (Java/Others)Memory Limit: 65536/65536 K (Java/Others)
#### 问题描述
> Hearthstone is an online collectible card game from Blizzard Entertainment. Strategies and luck are the most important factors in this game. When you suffer a desperate situation and your only hope depends on the top of the card deck, and you draw the only card to solve this dilemma. We call this "Shen Chou Gou" in Chinese.
> Now you are asked to calculate the probability to become a "Shen Chou Gou" to kill your enemy in this turn. To simplify this problem, we assume that there are only two kinds of cards, and you don't need to consider the cost of the cards.
>
> - A-Card: If the card deck contains less than two cards, draw all the cards from the card deck; otherwise, draw two cards from the top of the card deck.
> - B-Card: Deal X damage to your enemy.
>
> Note that different B-Cards may have different X values.
> At the beginning, you have no cards in your hands. Your enemy has P Hit Points (HP). The card deck has N A-Cards and M B-Cards. The card deck has been shuffled randomly. At the beginning of your turn, you draw a card from the top of the card deck. You can use all the cards in your hands until you run out of it. Your task is to calculate the probability that you can win in this turn, i.e., can deal at least P damage to your enemy.
输入
The first line is the number of test cases T (T<=10).
Then come three positive integers P (P<=1000), N and M (N+M<=20), representing the enemy’s HP, the number of A-Cards and the number of B-Cards in the card deck, respectively. Next line come M integers representing X (0<X<=1000) values for the B-Cards.
输出
For each test case, output the probability as a reduced fraction (i.e., the greatest common divisor of the numerator and denominator is 1). If the answer is zero (one), you should output 0/1 (1/1) instead.
样例
sample input
2
3 1 2
1 2
3 5 10
1 1 1 1 1 1 1 1 1 1sample output
1/3
46/273
题意
对手的血量为p,你有奥术牌n张,火球牌m张,一开始你可以任抽一张牌,之后如果抽到奥术,你就还可以抽两张牌,如果抽到火球,你就能给对手ai点伤害。
问最后打死对手的概率。
题解
我们可以先考虑从n+m张牌中恰好抽出k张奥术的概率,然后再去考虑用k+1张火球打死对手的概率。
队友用O(1<<(n+m))的复杂度强行模拟了牌堆取数的情况。orzorzorz
代码
#include<map>
#include<cmath>
#include<queue>
#include<vector>
#include<cstdio>
#include<string>
#include<cstring>
#include<iostream>
#include<algorithm>
using namespace std;
#define X first
#define Y second
#define mkp make_pair
#define lson (o<<1)
#define rson ((o<<1)|1)
#define mid (l+(r-l)/2)
#define sz() size()
#define pb(v) push_back(v)
#define all(o) (o).begin(),(o).end()
#define clr(a,v) memset(a,v,sizeof(a))
#define bug(a) cout<<#a<<" = "<<a<<endl
#define rep(i,a,b) for(int i=(a);i<(b);i++)
typedef long long LL;
typedef vector<int> VI;
typedef pair<int,int> PII;
typedef vector<pair<int,int> > VPII;
const int INF=1e9;
const LL INFL=0x3f3f3f3f3f3f3f3fLL;
const double eps=1e-8;
//start----------------------------------------------------------------------
const int maxm=22;
const int maxn=22;
int hp,n,m;
int arr[maxn];
LL sumao[maxn];
LL sumhuo[maxn];
LL one[(1<<maxn)+10];
LL cntao,cnthuo[maxn];
LL gcd(LL a,LL b) {
return b==0?a:gcd(b,a%b);
}
void init() {
cntao=0;
clr(cnthuo,0);
clr(sumao,0);
clr(sumhuo,0);
}
struct Fenshu {
LL a,b;
Fenshu(LL a,LL b):a(a),b(b) {}
Fenshu() {
a=0;
b=1;
}
};
Fenshu add(Fenshu fs1,Fenshu fs2) {
LL ta=fs1.a*fs2.b+fs1.b*fs2.a;
LL tb=fs1.b*fs2.b;
LL g=gcd(ta,tb);
return Fenshu(ta/g,tb/g);
}
Fenshu mul(Fenshu fs1,Fenshu fs2) {
LL ta=fs1.a*fs2.a;
LL tb=fs1.b*fs2.b;
LL g=gcd(ta,tb);
return Fenshu(ta/g,tb/g);
}
void pre() {
clr(one,0);
rep(i,0,(1<<(maxm))) {
rep(j,0,maxm) {
if(i&(1<<j)) one[i]++;
}
}
}
int main() {
pre();
int tc;
scanf("%d",&tc);
while(tc--) {
init();
scanf("%d%d%d",&hp,&n,&m);
rep(i,0,m) scanf("%d",arr+i);
//从n+m张牌中恰好能取出k张奥术的总数,存在sumao[k]里面。
rep(i,0,1<<(n+m)) {
if(one[i]!=n) continue;
cntao++;
int cnt=1,sum=0;
for(int j=0; cnt&&j<(n+m); j++) {
cnt--;
if(i&(1<<j)) {
sum++;
cnt+=2;
}
}
sumao[sum]++;
}
//从m张火球中取出k张并且打死对手的总数,存在sumhuo[k]里面。
rep(i,0,1<<m) {
int cnt=0,sum=0;
rep(j,0,m) {
if(i&(1<<j)) {
cnt++;
sum+=arr[j];
}
}
cnthuo[cnt]++;
if(sum>=hp) {
sumhuo[cnt]++;
}
}
Fenshu ans;
rep(i,0,n+1) {
//i张奥术能让我们抽i+1张火球。
Fenshu tmp;
if(i<m) tmp=mul(Fenshu(sumao[i],cntao),Fenshu(sumhuo[i+1],cnthuo[i+1]));
//最多只能抽到m张火球
else tmp=mul(Fenshu(sumao[i],cntao),Fenshu(sumhuo[m],cnthuo[m]));
ans=add(ans,tmp);
}
printf("%lld/%lld\n",ans.a,ans.b);
}
return 0;
}
//end-----------------------------------------------------------------------
HDU 5816 Hearthstone 概率dp的更多相关文章
- HDU 3853LOOPS(简单概率DP)
HDU 3853 LOOPS 题目大意是说人现在在1,1,需要走到N,N,每次有p1的可能在元位置不变,p2的可能走到右边一格,有p3的可能走到下面一格,问从起点走到终点的期望值 这是弱菜做的第 ...
- HDU - 1099 - Lottery - 概率dp
http://acm.hdu.edu.cn/showproblem.php?pid=1099 最最简单的概率dp,完全是等概率转移. 设dp[i]为已有i张票,还需要抽几次才能集齐的期望. 那么dp[ ...
- HDU 4405 【概率dp】
题意: 飞行棋,从0出发要求到n或者大于n的步数的期望.每一步可以投一下筛子,前进相应的步数,筛子是常见的6面筛子. 但是有些地方可以从a飞到大于a的b,并且保证每个a只能对应一个b,而且可以连续飞, ...
- HDU 4576 Robot(概率dp)
题目 /*********************复制来的大致题意********************** 有N个数字,M个操作, 区间L, R. 然后问经过M个操作后落在[L, R]的概率. * ...
- HDU 4599 Dice (概率DP+数学+快速幂)
题意:给定三个表达式,问你求出最小的m1,m2,满足G(m1) >= F(n), G(m2) >= G(n). 析:这个题是一个概率DP,但是并没有那么简单,运算过程很麻烦. 先分析F(n ...
- [HDU 4089]Activation[概率DP]
题意: 有n个人排队等着在官网上激活游戏.Tomato排在第m个. 对于队列中的第一个人.有以下情况: 1.激活失败,留在队列中等待下一次激活(概率为p1) 2.失去连接,出队列,然后排在队列的最后( ...
- hdu 3853 LOOPS 概率DP
简单的概率DP入门题 代码如下: #include<iostream> #include<stdio.h> #include<algorithm> #include ...
- HDU 3853 期望概率DP
期望概率DP简单题 从[1,1]点走到[r,c]点,每走一步的代价为2 给出每一个点走相邻位置的概率,共3中方向,不动: [x,y]->[x][y]=p[x][y][0] , 右移:[x][y ...
- HDU 3366 Passage (概率DP)
题意:T组测试数据,一个人困在了城堡中,有n个通道,m百万money ,每个通道能直接逃出去的概率为 P[i] ,遇到士兵的概率为 q[i], 遇到士兵得给1百万money,否则会被杀掉,还有 1-p ...
随机推荐
- keepalived+nginx+tomcat+redis实现负载均衡和session共享(原创)
keepalived+nginx+tomcat+redis实现负载均衡和session共享 直接上链接,码了一天,就不再重写了,希望能帮到大家,有问题欢迎留言交流.
- Android中的AutoCompleteTextView(随笔提示文本)组件的简单使用
Android中的随笔提示文本组件AutoCompleteTextView的使用,此组件用于输入文本,然后就会在所配置的适配器中的数据进行查找显示在组件下面. 这里值得注意的是AutoComplete ...
- Java : logback简单配置
需要把logback.xml文件放在类路径下,如果是spring boot项目可以用 logging.config=classpath:log/xxxxxx.xml来指定配置文件 logback la ...
- php 将富文本编辑后的内容取出
背景:项目中用了富文本编辑器,讲写完的内容存入了数据库,但是取出的时候因为有些展示地方并不需要样式,只想获取到内容,所以需要将带了html编码的信息解析出来. 原始信息如下 [task_desc] = ...
- linux动态链接库
前言 静态链接库会编译进可执行文件,并被加载到内存,会造成空间浪费 静态链接库对程序的更新.部署.发布带来麻烦.如果静态库更新了,使用它的应用程序都需要重新编译.发布给用户(对于玩家来说,可能是一个很 ...
- IP数据报、TCP报文、UDP报文格式
总是记不得TCP/IP协议的各个协议格式,特在此做个记录,好方便回顾. 信息来自众多网络大神们的总结,我再结合自己的理解整理所得. ================================== ...
- c++中string (MFC)
题目:UVALive - 6439 https://icpcarchive.ecs.baylor.edu/index.php?option=com_onlinejudge&Itemid= ...
- VIO 初始化小结 - 10.17
最近几个月忙于博士毕业,找工作一直没有继续更新博客,希望以这一篇开始,每个月能够继续有几篇总结博客. 首先review一下比较著名的vio系统 Tightly coupled EKF: mainly ...
- Android7.0 应用内升级
Android7.0应用内升级 最近线上项目在7.0机器上出现应用内升级失败,原来是由于Android7.0权限问题导致. 如果项目的 targetSdkVersion>=24 在处理应用内升级 ...
- 引领技术变革,腾讯云、腾讯WeTest和英特尔,合作布局云游戏
WeTest 导读 ChinaJoy作为中国泛娱乐产业年度风向标,受到全球业界的高度关注.在本届ChinaJoy上,腾讯云.腾讯WeTest和英特尔,合作为游戏玩家.游戏开发者等业界人士联合展出了云游 ...