Description

Recently in Farland, a country in Asia, a famous scientist Mr. Log Archeo has discovered ancient pyramids. But unlike those in Egypt and Central America, they have triangular (not rectangular) foundation. That is, they are tetrahedrons in mathematical sense. In order to find out some important facts about the early society of the country (it is widely believed that the pyramid sizes are in tight connection with Farland ancient calendar), Mr. Archeo needs to know the volume of the pyramids. Unluckily, he has reliable data about their edge lengths only. Please, help him!

Input

The file contains six positive integer numbers not exceeding 1000 separated by spaces, each number is one of the edge lengths of the pyramid ABCD. The order of the edges is the following: AB, AC, AD, BC, BD, CD.

Output

A real number -- the volume printed accurate to four digits after decimal point.
 
题目大意:给四面体的六条边,求这个四面体的体积。
思路:用欧拉四面体公式,注意每条边的对应关系。
 
代码(47MS):
 #include <cstdio>
#include <cstring>
#include <iostream>
#include <algorithm>
#include <cmath>
using namespace std;
#define sqr(x) ((x) * (x)) typedef long long LL;
typedef long double LD; const int MAXN = ;
const double EPS = 1e-;
const double PI = acos(-1.0);//3.14159265358979323846
const double INF = ; inline int sgn(double x) {
return (x > EPS) - (x < -EPS);
} struct Point {
double x, y, ag;
Point() {}
Point(double x, double y): x(x), y(y) {}
void read() {
scanf("%lf%lf", &x, &y);
}
bool operator == (const Point &rhs) const {
return sgn(x - rhs.x) == && sgn(y - rhs.y) == ;
}
bool operator < (const Point &rhs) const {
if(y != rhs.y) return y < rhs.y;
return x < rhs.x;
}
Point operator + (const Point &rhs) const {
return Point(x + rhs.x, y + rhs.y);
}
Point operator - (const Point &rhs) const {
return Point(x - rhs.x, y - rhs.y);
}
Point operator * (const double &b) const {
return Point(x * b, y * b);
}
Point operator / (const double &b) const {
return Point(x / b, y / b);
}
double operator * (const Point &rhs) const {
return x * rhs.x + y * rhs.y;
}
double length() {
return sqrt(x * x + y * y);
}
double angle() {
return atan2(y, x);
}
Point unit() {
return *this / length();
}
void makeAg() {
ag = atan2(y, x);
}
void print() {
printf("%.10f %.10f\n", x, y);
}
};
typedef Point Vector; double dist(const Point &a, const Point &b) {
return (a - b).length();
} double cross(const Point &a, const Point &b) {
return a.x * b.y - a.y * b.x;
}
//ret >= 0 means turn right
double cross(const Point &sp, const Point &ed, const Point &op) {
return cross(sp - op, ed - op);
} double area(const Point& a, const Point &b, const Point &c) {
return fabs(cross(a - c, b - c)) / ;
}
//counter-clockwise
Point rotate(const Point &p, double angle, const Point &o = Point(, )) {
Point t = p - o;
double x = t.x * cos(angle) - t.y * sin(angle);
double y = t.y * cos(angle) + t.x * sin(angle);
return Point(x, y) + o;
} double cosIncludeAngle(const Point &a, const Point &b, const Point &o) {
Point p1 = a - o, p2 = b - o;
return (p1 * p2) / (p1.length() * p2.length());
} double includedAngle(const Point &a, const Point &b, const Point &o) {
return acos(cosIncludeAngle(a, b, o));
/*
double ret = abs((a - o).angle() - (b - o).angle());
if(sgn(ret - PI) > 0) ret = 2 * PI - ret;
return ret;
*/
} struct Seg {
Point st, ed;
double ag;
Seg() {}
Seg(Point st, Point ed): st(st), ed(ed) {}
void read() {
st.read(); ed.read();
}
void makeAg() {
ag = atan2(ed.y - st.y, ed.x - st.x);
}
};
typedef Seg Line; //ax + by + c > 0
Line buildLine(double a, double b, double c) {
if(sgn(a) == && sgn(b) == ) return Line(Point(sgn(c) > ? - : , INF), Point(, INF));
if(sgn(a) == ) return Line(Point(sgn(b), -c/b), Point(, -c/b));
if(sgn(b) == ) return Line(Point(-c/a, ), Point(-c/a, sgn(a)));
if(b < ) return Line(Point(, -c/b), Point(, -(a + c) / b));
else return Line(Point(, -(a + c) / b), Point(, -c/b));
} void moveRight(Line &v, double r) {
double dx = v.ed.x - v.st.x, dy = v.ed.y - v.st.y;
dx = dx / dist(v.st, v.ed) * r;
dy = dy / dist(v.st, v.ed) * r;
v.st.x += dy; v.ed.x += dy;
v.st.y -= dx; v.ed.y -= dx;
} bool isOnSeg(const Seg &s, const Point &p) {
return (p == s.st || p == s.ed) ||
(((p.x - s.st.x) * (p.x - s.ed.x) < ||
(p.y - s.st.y) * (p.y - s.ed.y) < ) &&
sgn(cross(s.ed, p, s.st)) == );
} bool isInSegRec(const Seg &s, const Point &p) {
return sgn(min(s.st.x, s.ed.x) - p.x) <= && sgn(p.x - max(s.st.x, s.ed.x)) <=
&& sgn(min(s.st.y, s.ed.y) - p.y) <= && sgn(p.y - max(s.st.y, s.ed.y)) <= ;
} bool isIntersected(const Point &s1, const Point &e1, const Point &s2, const Point &e2) {
return (max(s1.x, e1.x) >= min(s2.x, e2.x)) &&
(max(s2.x, e2.x) >= min(s1.x, e1.x)) &&
(max(s1.y, e1.y) >= min(s2.y, e2.y)) &&
(max(s2.y, e2.y) >= min(s1.y, e1.y)) &&
(cross(s2, e1, s1) * cross(e1, e2, s1) >= ) &&
(cross(s1, e2, s2) * cross(e2, e1, s2) >= );
} bool isIntersected(const Seg &a, const Seg &b) {
return isIntersected(a.st, a.ed, b.st, b.ed);
} bool isParallel(const Seg &a, const Seg &b) {
return sgn(cross(a.ed - a.st, b.ed - b.st)) == ;
} //return Ax + By + C =0 's A, B, C
void Coefficient(const Line &L, double &A, double &B, double &C) {
A = L.ed.y - L.st.y;
B = L.st.x - L.ed.x;
C = L.ed.x * L.st.y - L.st.x * L.ed.y;
}
//point of intersection
Point operator * (const Line &a, const Line &b) {
double A1, B1, C1;
double A2, B2, C2;
Coefficient(a, A1, B1, C1);
Coefficient(b, A2, B2, C2);
Point I;
I.x = - (B2 * C1 - B1 * C2) / (A1 * B2 - A2 * B1);
I.y = (A2 * C1 - A1 * C2) / (A1 * B2 - A2 * B1);
return I;
} bool isEqual(const Line &a, const Line &b) {
double A1, B1, C1;
double A2, B2, C2;
Coefficient(a, A1, B1, C1);
Coefficient(b, A2, B2, C2);
return sgn(A1 * B2 - A2 * B1) == && sgn(A1 * C2 - A2 * C1) == && sgn(B1 * C2 - B2 * C1) == ;
} double Point_to_Line(const Point &p, const Line &L) {
return fabs(cross(p, L.st, L.ed)/dist(L.st, L.ed));
} double Point_to_Seg(const Point &p, const Seg &L) {
if(sgn((L.ed - L.st) * (p - L.st)) < ) return dist(p, L.st);
if(sgn((L.st - L.ed) * (p - L.ed)) < ) return dist(p, L.ed);
return Point_to_Line(p, L);
} double Seg_to_Seg(const Seg &a, const Seg &b) {
double ans1 = min(Point_to_Seg(a.st, b), Point_to_Seg(a.ed, b));
double ans2 = min(Point_to_Seg(b.st, a), Point_to_Seg(b.ed, a));
return min(ans1, ans2);
} struct Circle {
Point c;
double r;
Circle() {}
Circle(Point c, double r): c(c), r(r) {}
void read() {
c.read();
scanf("%lf", &r);
}
double area() const {
return PI * r * r;
}
bool contain(const Circle &rhs) const {
return sgn(dist(c, rhs.c) + rhs.r - r) <= ;
}
bool contain(const Point &p) const {
return sgn(dist(c, p) - r) <= ;
}
bool intersect(const Circle &rhs) const {
return sgn(dist(c, rhs.c) - r - rhs.r) < ;
}
bool tangency(const Circle &rhs) const {
return sgn(dist(c, rhs.c) - r - rhs.r) == ;
}
Point pos(double angle) const {
Point p = Point(c.x + r, c.y);
return rotate(p, angle, c);
}
}; double CommonArea(const Circle &A, const Circle &B) {
double area = 0.0;
const Circle & M = (A.r > B.r) ? A : B;
const Circle & N = (A.r > B.r) ? B : A;
double D = dist(M.c, N.c);
if((D < M.r + N.r) && (D > M.r - N.r)) {
double cosM = (M.r * M.r + D * D - N.r * N.r) / (2.0 * M.r * D);
double cosN = (N.r * N.r + D * D - M.r * M.r) / (2.0 * N.r * D);
double alpha = * acos(cosM);
double beta = * acos(cosN);
double TM = 0.5 * M.r * M.r * (alpha - sin(alpha));
double TN = 0.5 * N.r * N.r * (beta - sin(beta));
area = TM + TN;
}
else if(D <= M.r - N.r) {
area = N.area();
}
return area;
} int intersection(const Seg &s, const Circle &cir, Point &p1, Point &p2) {
double angle = cosIncludeAngle(s.ed, cir.c, s.st);
//double angle1 = cos(includedAngle(s.ed, cir.c, s.st));
double B = dist(cir.c, s.st);
double a = , b = - * B * angle, c = sqr(B) - sqr(cir.r);
double delta = sqr(b) - * a * c;
if(sgn(delta) < ) return ;
if(sgn(delta) == ) delta = ;
double x1 = (-b - sqrt(delta)) / ( * a), x2 = (-b + sqrt(delta)) / ( * a);
Vector v = (s.ed - s.st).unit();
p1 = s.st + v * x1;
p2 = s.st + v * x2;
return + sgn(delta);
} double CommonArea(const Circle &cir, Point p1, Point p2) {
if(p1 == cir.c || p2 == cir.c) return ;
if(cir.contain(p1) && cir.contain(p2)) {
return area(cir.c, p1, p2);
} else if(!cir.contain(p1) && !cir.contain(p2)) {
Point q1, q2;
int t = intersection(Line(p1, p2), cir, q1, q2);
if(t == ) {
double angle = includedAngle(p1, p2, cir.c);
return 0.5 * sqr(cir.r) * angle;
} else {
double angle1 = includedAngle(p1, p2, cir.c);
double angle2 = includedAngle(q1, q2, cir.c);
if(isInSegRec(Seg(p1, p2), q1))return 0.5 * sqr(cir.r) * (angle1 - angle2 + sin(angle2));
else return 0.5 * sqr(cir.r) * angle1;
}
} else {
if(cir.contain(p2)) swap(p1, p2);
Point q1, q2;
intersection(Line(p1, p2), cir, q1, q2);
double angle = includedAngle(q2, p2, cir.c);
double a = area(cir.c, p1, q2);
double b = 0.5 * sqr(cir.r) * angle;
return a + b;
}
} struct Triangle {
Point p[];
Triangle() {}
Triangle(Point *t) {
for(int i = ; i < ; ++i) p[i] = t[i];
}
void read() {
for(int i = ; i < ; ++i) p[i].read();
}
double area() const {
return ::area(p[], p[], p[]);
}
Point& operator[] (int i) {
return p[i];
}
}; double CommonArea(Triangle tir, const Circle &cir) {
double ret = ;
ret += sgn(cross(tir[], cir.c, tir[])) * CommonArea(cir, tir[], tir[]);
ret += sgn(cross(tir[], cir.c, tir[])) * CommonArea(cir, tir[], tir[]);
ret += sgn(cross(tir[], cir.c, tir[])) * CommonArea(cir, tir[], tir[]);
return abs(ret);
} struct Poly {
int n;
Point p[MAXN];//p[n] = p[0]
void init(Point *pp, int nn) {
n = nn;
for(int i = ; i < n; ++i) p[i] = pp[i];
p[n] = p[];
}
double area() {
if(n < ) return ;
double s = p[].y * (p[n - ].x - p[].x);
for(int i = ; i < n; ++i)
s += p[i].y * (p[i - ].x - p[i + ].x);
return s / ;
}
};
//the convex hull is clockwise
void Graham_scan(Point *p, int n, int *stk, int &top) {//stk[0] = stk[top]
sort(p, p + n);
top = ;
stk[] = ; stk[] = ;
for(int i = ; i < n; ++i) {
while(top && cross(p[i], p[stk[top]], p[stk[top - ]]) <= ) --top;
stk[++top] = i;
}
int len = top;
stk[++top] = n - ;
for(int i = n - ; i >= ; --i) {
while(top != len && cross(p[i], p[stk[top]], p[stk[top - ]]) <= ) --top;
stk[++top] = i;
}
}
//use for half_planes_cross
bool cmpAg(const Line &a, const Line &b) {
if(sgn(a.ag - b.ag) == )
return sgn(cross(b.ed, a.st, b.st)) < ;
return a.ag < b.ag;
}
//clockwise, plane is on the right
bool half_planes_cross(Line *v, int vn, Poly &res, Line *deq) {
int i, n;
sort(v, v + vn, cmpAg);
for(i = n = ; i < vn; ++i) {
if(sgn(v[i].ag - v[i-].ag) == ) continue;
v[n++] = v[i];
}
int head = , tail = ;
deq[] = v[], deq[] = v[];
for(i = ; i < n; ++i) {
if(isParallel(deq[tail - ], deq[tail]) || isParallel(deq[head], deq[head + ]))
return false;
while(head < tail && sgn(cross(v[i].ed, deq[tail - ] * deq[tail], v[i].st)) > )
--tail;
while(head < tail && sgn(cross(v[i].ed, deq[head] * deq[head + ], v[i].st)) > )
++head;
deq[++tail] = v[i];
}
while(head < tail && sgn(cross(deq[head].ed, deq[tail - ] * deq[tail], deq[head].st)) > )
--tail;
while(head < tail && sgn(cross(deq[tail].ed, deq[head] * deq[head + ], deq[tail].st)) > )
++head;
if(tail <= head + ) return false;
res.n = ;
for(i = head; i < tail; ++i)
res.p[res.n++] = deq[i] * deq[i + ];
res.p[res.n++] = deq[head] * deq[tail];
res.n = unique(res.p, res.p + res.n) - res.p;
res.p[res.n] = res.p[];
return true;
} //ix and jx is the points whose distance is return, res.p[n - 1] = res.p[0], res must be clockwise
double dia_rotating_calipers(Poly &res, int &ix, int &jx) {
double dia = ;
int q = ;
for(int i = ; i < res.n - ; ++i) {
while(sgn(cross(res.p[i], res.p[q + ], res.p[i + ]) - cross(res.p[i], res.p[q], res.p[i + ])) > )
q = (q + ) % (res.n - );
if(sgn(dist(res.p[i], res.p[q]) - dia) > ) {
dia = dist(res.p[i], res.p[q]);
ix = i; jx = q;
}
if(sgn(dist(res.p[i + ], res.p[q]) - dia) > ) {
dia = dist(res.p[i + ], res.p[q]);
ix = i + ; jx = q;
}
}
return dia;
}
//a and b must be clockwise, find the minimum distance between two convex hull
double half_rotating_calipers(Poly &a, Poly &b) {
int sa = , sb = ;
for(int i = ; i < a.n; ++i) if(sgn(a.p[i].y - a.p[sa].y) < ) sa = i;
for(int i = ; i < b.n; ++i) if(sgn(b.p[i].y - b.p[sb].y) < ) sb = i;
double tmp, ans = dist(a.p[], b.p[]);
for(int i = ; i < a.n; ++i) {
while(sgn(tmp = cross(a.p[sa], a.p[sa + ], b.p[sb + ]) - cross(a.p[sa], a.p[sa + ], b.p[sb])) > )
sb = (sb + ) % (b.n - );
if(sgn(tmp) < ) ans = min(ans, Point_to_Seg(b.p[sb], Seg(a.p[sa], a.p[sa + ])));
else ans = min(ans, Seg_to_Seg(Seg(a.p[sa], a.p[sa + ]), Seg(b.p[sb], b.p[sb + ])));
sa = (sa + ) % (a.n - );
}
return ans;
} double rotating_calipers(Poly &a, Poly &b) {
return min(half_rotating_calipers(a, b), half_rotating_calipers(b, a));
}
//欧拉四面体公式AB, AC, AD, BC, BD, CD
double area(double p, double q, double r, double n, double m, double l) {
p *= p, q *= q, r *= r, n *= n, m *= m, l *= l;
long double ret = ;
ret += LD(p) * q * r;
ret += LD(p + q - n) * (q + r - l) * (p + r - m) / ;
ret -= LD(p + r - m) * q * (p + r - m) / ;
ret -= LD(p + q - n) * (p + q - n) * r / ;
ret -= LD(q + r - l) * (q + r - l) * p / ;
return sqrt(ret / );
} /*******************************************************************************************/ Point p[MAXN];
Circle cir;
double r;
int n; int main() {
double p, q, r, n, m, l;
while(cin>>p>>q>>r>>n>>m>>l) {
printf("%.4f\n", area(p, q, r, n, m, l));
}
}

POJ 2208 Pyramids(求四面体体积)的更多相关文章

  1. POJ 2208 Pyramids 欧拉四面体

    给出边长,直接就可以求出体积咯 关于欧拉四面体公式的推导及证明过程 2010-08-16 14:18 1,建议x,y,z直角坐标系.设A.B.C少拿点的坐标分别为(a1,b1,c1),(a2,b2,c ...

  2. POJ 2208--Pyramids(欧拉四面体体积计算)

    Pyramids Time Limit: 1000MS   Memory Limit: 65536K Total Submissions: 3451   Accepted: 1123   Specia ...

  3. POJ 3978 Primes(求范围素数个数)

    POJ 3978 Primes(求范围素数个数) id=3978">http://poj.org/problem? id=3978 题意: 给你一个区间范围A和B,要你求出[A,B]内 ...

  4. HDU 3642 Get The Treasury ( 线段树 求长方体体积并 )

    求覆盖三次及其以上的长方体体积并. 这题跟 http://wenku.baidu.com/view/d6f309eb81c758f5f61f6722.html 这里讲的长方体体积并并不一样. 因为本题 ...

  5. POJ 2208 已知边四面体六个长度,计算体积

    Pyramids Time Limit: 1000MS   Memory Limit: 65536K Total Submissions: 2718   Accepted: 886   Special ...

  6. POJ2208 Pyramids 四面体体积

    POJ2208给定四面体六条棱(有序)的长度 求体积 显然用高中立体几何的方法就可以解决. 给出代码 #include<iostream> #include<cstdio> # ...

  7. poj 3348--Cows(凸包求面积)

    链接:http://poj.org/problem?id=3348 Cows Time Limit: 2000MS   Memory Limit: 65536K Total Submissions:  ...

  8. POJ 1269 (直线求交)

    Problem Intersecting Lines (POJ 1269) 题目大意 给定两条直线,问两条直线是否重合,是否平行,或求出交点. 解题分析 主要用叉积做,可以避免斜率被0除的情况. 求交 ...

  9. poj 2449(A*求第K短路)

    题目链接:http://poj.org/problem?id=2449 思路:我们可以定义g[x]为源点到当前点的距离,h[x]为当前点到目标节点的最短距离,显然有h[x]<=h*[x](h*[ ...

随机推荐

  1. python多线程知识-实用实例

    python多线程使用场景:IO操作,不适合CPU密集操作型任务   1.多个线程内存共享 2.线程同时修改同一份数据需要加锁,mutex互斥锁 3.递归锁:多把锁,锁中有锁 4.python多线程, ...

  2. nuxt 优化项:禁用js的预加载

    这里有个nuxt和vue不同的地方,这个地方很有意思,官方的中文文档说得蜜汁自信 ------------------------------- In production, nuxt.js uses ...

  3. wdcp v3 pureftpd 无法登录问题解决

    wdcp v3 新建站点和ftp账号 单位无法登录ftp 在端口中也确实可以看到有进行在登录状态 错误原因: 防火墙端口没有开启该端口范围  20000-30000 这时候发现 改端口为20078  ...

  4. Hexo博客部署到个人服务器

    本文跳过阿里云创建git仓库.hexo部署到github的步骤,有需要的可以移步下面博客地址查看: 在阿里云服务器上创建git远程仓库 使用Hexo建立博客 一.服务器相关配置 本文使用hexo在本地 ...

  5. hadoop的自定义分组实现 (Partition机制)

    hadoop开发中我们会遇到类似这样的问题,比如 如何将不同省份的手机号分别输出到不同的文件中,本片文章将对hadoop内置的Partition类进行重写以解决这个问题. MapReduce的使用者通 ...

  6. Python学习手册之__main__ 模块,常用第三方模块和打包发布

    在上一篇文章中,我们介绍了 Python 的 元组拆包.三元运算符和对 Python 的 else 语句进行了深入讲解,现在我们介绍 Python 的 __main__ 模块.常用第三方模块和打包发布 ...

  7. Java学习笔记二十七:Java中的抽象类

    Java中的抽象类 一:Java抽象类: 在面向对象的概念中,所有的对象都是通过类来描绘的,但是反过来,并不是所有的类都是用来描绘对象的,如果一个类中没有包含足够的信息来描绘一个具体的对象,这样的类就 ...

  8. Artistic Style 3.1

    Artistic Style 3.1 Tab 选项 下面的示例显示空白字符.一个空格(space)用一个 . 表示,一个制表符(tab)用 > (大于号) 表示. ** 默认缩进 ** 如果没有 ...

  9. st link 连接问题ST LINK is not in the DFU mode plesse restart it

    原因:插上st link后做了一些操作才点击升级.如点击了连接stlink,如下图等: 解决办法: 1. 拔掉stlink 2. 插上stlink 3. 不要点其他的,直接点击ST-LINK-> ...

  10. JAVA8 Stream API的使用

    /** * @auther hhh * @date 2018/12/31 12:48 * @description Stream流:用来处理数组.集合的API * 1.不是数据结构,没有内部存储(只是 ...