POJ 3348 Cows(凸包+多边形面积)
Description
Your friend to the south is interested in building fences and turning plowshares into swords. In order to help with his overseas adventure, they are forced to save money on buying fence posts by using trees as fence posts wherever possible. Given the locations of some trees, you are to help farmers try to create the largest pasture that is possible. Not all the trees will need to be used.
However, because you will oversee the construction of the pasture yourself, all the farmers want to know is how many cows they can put in the pasture. It is well known that a cow needs at least 50 square metres of pasture to survive.
Input
The first line of input contains a single integer, n (1 ≤ n ≤ 10000), containing the number of trees that grow on the available land. The next n lines contain the integer coordinates of each tree given as two integers x and y separated by one space (where -1000 ≤ x, y ≤ 1000). The integer coordinates correlate exactly to distance in metres (e.g., the distance between coordinate (10; 11) and (11; 11) is one metre).
Output
You are to output a single integer value, the number of cows that can survive on the largest field you can construct using the available trees.
题目大意:给n个点,求凸包,然后求这个凸包的面积。
思路:跟题目大意一样……
#include <cstdio>
#include <cstring>
#include <iostream>
#include <algorithm>
#include <cmath>
using namespace std; const int MAXN = ;
const double EPS = 1e-;
const double PI = acos(-1.0);//3.14159265358979323846 inline int sgn(double x) {
return (x > EPS) - (x < -EPS);
} struct Point {
double x, y;
Point() {}
Point(double x, double y): x(x), y(y) {}
void read() {
scanf("%lf%lf", &x, &y);
}
bool operator == (const Point &rhs) const {
return sgn(x - rhs.x) == && sgn(y - rhs.y) == ;
}
bool operator < (const Point &rhs) const {
if(y != rhs.y) return y < rhs.y;
return x < rhs.x;
}
Point operator + (const Point &rhs) const {
return Point(x + rhs.x, y + rhs.y);
}
Point operator - (const Point &rhs) const {
return Point(x - rhs.x, y - rhs.y);
}
Point operator * (const int &b) const {
return Point(x * b, y * b);
}
Point operator / (const int &b) const {
return Point(x / b, y / b);
}
double length() const {
return sqrt(x * x + y * y);
}
Point unit() const {
return *this / length();
}
};
typedef Point Vector; double dist(const Point &a, const Point &b) {
return (a - b).length();
} double cross(const Point &a, const Point &b) {
return a.x * b.y - a.y * b.x;
}
//ret >= 0 means turn left
double cross(const Point &sp, const Point &ed, const Point &op) {
return sgn(cross(sp - op, ed - op));
} double area(const Point& a, const Point &b, const Point &c) {
return fabs(cross(a - c, b - c)) / ;
} struct Seg {
Point st, ed;
Seg() {}
Seg(Point st, Point ed): st(st), ed(ed) {}
void read() {
st.read(); ed.read();
}
};
typedef Seg Line; bool isOnSeg(const Seg &s, const Point &p) {
return (p == s.st || p == s.ed) ||
(((p.x - s.st.x) * (p.x - s.ed.x) < ||
(p.y - s.st.y) * (p.y - s.ed.y) < ) &&
sgn(cross(s.ed, p, s.st) == ));
} bool isIntersected(const Point &s1, const Point &e1, const Point &s2, const Point &e2) {
return (max(s1.x, e1.x) >= min(s2.x, e2.x)) &&
(max(s2.x, e2.x) >= min(s1.x, e1.x)) &&
(max(s1.y, e1.y) >= min(s2.y, e2.y)) &&
(max(s2.y, e2.y) >= min(s1.y, e1.y)) &&
(cross(s2, e1, s1) * cross(e1, e2, s1) >= ) &&
(cross(s1, e2, s2) * cross(e2, e1, s2) >= );
} bool isIntersected(const Seg &a, const Seg &b) {
return isIntersected(a.st, a.ed, b.st, b.ed);
} bool isParallel(const Seg &a, const Seg &b) {
return sgn(cross(a.ed - a.st, b.ed - b.st)) == ;
} //return Ax + By + C =0 's A, B, C
void Coefficient(const Line &L, double &A, double &B, double &C) {
A = L.ed.y - L.st.y;
B = L.st.x - L.ed.x;
C = L.ed.x * L.st.y - L.st.x * L.ed.y;
} Point intersection(const Line &a, const Line &b) {
double A1, B1, C1;
double A2, B2, C2;
Coefficient(a, A1, B1, C1);
Coefficient(b, A2, B2, C2);
Point I;
I.x = - (B2 * C1 - B1 * C2) / (A1 * B2 - A2 * B1);
I.y = (A2 * C1 - A1 * C2) / (A1 * B2 - A2 * B1);
return I;
} bool isEqual(const Line &a, const Line &b) {
double A1, B1, C1;
double A2, B2, C2;
Coefficient(a, A1, B1, C1);
Coefficient(b, A2, B2, C2);
return sgn(A1 * B2 - A2 * B1) == && sgn(A1 * C2 - A2 * C1) == && sgn(B1 * C2 - B2 * C1) == ;
} struct Poly {
int n;
Point p[MAXN];//p[n] = p[0]
void init(Point *pp, int nn) {
n = nn;
for(int i = ; i < n; ++i) p[i] = pp[i];
p[n] = p[];
}
double area() {
if(n < ) return ;
double s = p[].y * (p[n - ].x - p[].x);
for(int i = ; i < n; ++i)
s += p[i].y * (p[i - ].x - p[i + ].x);
return s / ;
}
}; void Graham_scan(Point *p, int n, int *stk, int &top) {//stk[0] = stk[top]
sort(p, p + n);
top = ;
stk[] = ; stk[] = ;
for(int i = ; i < n; ++i) {
while(top && cross(p[i], p[stk[top]], p[stk[top - ]]) >= ) --top;
stk[++top] = i;
}
int len = top;
stk[++top] = n - ;
for(int i = n - ; i >= ; --i) {
while(top != len && cross(p[i], p[stk[top]], p[stk[top - ]]) >= ) --top;
stk[++top] = i;
}
} /*******************************************************************************************/ Point p[MAXN];
Poly poly;
int stk[MAXN], top;
int n, T; int solve() {
poly.n = top;
for(int i = ; i <= top; ++i) poly.p[i] = p[stk[i]];
double ret = poly.area() + EPS;
return int(ret / );
} int main() {
scanf("%d", &n);
for(int i = ; i < n; ++i) p[i].read();
Graham_scan(p, n, stk, top);
printf("%d\n", solve());
}
POJ 3348 Cows(凸包+多边形面积)的更多相关文章
- POJ 3348 Cows 凸包 求面积
LINK 题意:给出点集,求凸包的面积 思路:主要是求面积的考察,固定一个点顺序枚举两个点叉积求三角形面积和除2即可 /** @Date : 2017-07-19 16:07:11 * @FileNa ...
- poj3348 Cows 凸包+多边形面积 水题
/* poj3348 Cows 凸包+多边形面积 水题 floor向下取整,返回的是double */ #include<stdio.h> #include<math.h> # ...
- poj 3348 Cows 凸包 求多边形面积 计算几何 难度:0 Source:CCC207
Cows Time Limit: 2000MS Memory Limit: 65536K Total Submissions: 7038 Accepted: 3242 Description ...
- POJ 3348 - Cows 凸包面积
求凸包面积.求结果后不用加绝对值,这是BBS()排序决定的. //Ps 熟练了template <class T>之后用起来真心方便= = //POJ 3348 //凸包面积 //1A 2 ...
- POJ 3348 Cows (凸包模板+凸包面积)
Description Your friend to the south is interested in building fences and turning plowshares into sw ...
- POJ 3348:Cows 凸包+多边形面积
Cows Time Limit: 2000MS Memory Limit: 65536K Total Submissions: 7739 Accepted: 3507 Description ...
- POJ 3348 Cows [凸包 面积]
Cows Time Limit: 2000MS Memory Limit: 65536K Total Submissions: 9022 Accepted: 3992 Description ...
- POJ 3348 Cows | 凸包模板题
题目: 给几个点,用绳子圈出最大的面积养牛,输出最大面积/50 题解: Graham凸包算法的模板题 下面给出做法 1.选出x坐标最小(相同情况y最小)的点作为极点(显然他一定在凸包上) 2.其他点进 ...
- POJ 3348 Cows | 凸包——童年的回忆(误)
想当年--还是邱神给我讲的凸包来着-- #include <cstdio> #include <cstring> #include <cmath> #include ...
- poj 3348 Cow 凸包面积
Cows Time Limit: 2000MS Memory Limit: 65536K Total Submissions: 8122 Accepted: 3674 Description ...
随机推荐
- 四种常见的 POST 提交数据方式对应的content-type
原文地址:https://www.cnblogs.com/wushifeng/p/6707248.html application/x-www-form-urlencoded 这应该是最常见的 POS ...
- acm--1004
问题描述 再次比赛时间!看到气球在四周漂浮,多么兴奋.但要告诉你一个秘密,评委最喜欢的时间是猜测最流行的问题.比赛结束后,他们会统计每种颜色的气球并找出结果. 今年,他们决定离开这个可爱的工作给你. ...
- 如何创建systemd定时任务
1. 如何创建一个定时任务,通过systemd系统 1. 如何创建一个定时任务,通过systemd系统 1.1. systemd中的timer 1.2. 自定义定时任务 1.2.1. 具体步骤 1.2 ...
- 如何将js字符串变成首字母大写其余小写
有时候会接收到一些大小写不规则的字符串,如"JAMES"."alice"."Amy"等,如何将他们统一的变成首字母大写其余小写的形式呢? 思 ...
- 可以提高php编程效率的20个要点
整理了可以提高php编程效率的20个要点,发博客记录一下,需要的朋友可以参考. 1.如果能将类的方法定义成static,就尽量定义成static,它的速度会提升将近4倍. 2.$row['id' ...
- PHP的发展历程
PHP的发展历程 了解一门语言,我们必须知道这门语言的发展史,现在我通过版本的变化以时间轴的形式来说明PHP的发展历程. 1.1995年初PHP1.0诞生 Rasmus Lerdof发明了PHP,这是 ...
- QEP之init()和dispatch()流程图
抽象状态机类QFsm或QHsm有一个函数指针,用于在继承的具体状态机类中指向具体的状态函数,其有两个对外的接口函数init()和dispatch(),其工作原理是理解状态机处理事件过程的关键. 具体状 ...
- python爬xx图代码
今日 好热,照样是挖洞挖不到,看了几天的python爬虫,学会了xpath解析 撸一个代码玩玩] 不要说什么,优化之类的,刚学完,跑了一阵 ,还可以 挺稳定 # -*- coding:utf-8 - ...
- python note 001
.tilte() .upper() .lower() --- \n \t --- "apple"+" "+"pen" --- .strip( ...
- Redis系列化方式有哪些?哪个系列化性能最好?
Redis系列化方式有JDK系列化.JSON系列化.XML系列化等多种.我专门测试过,在我的笔记本电脑上保存5万条User对象到Redis,JDK系列化方式平均要15秒,JSON系列化方式只要13秒多 ...