Description

Your friend to the south is interested in building fences and turning plowshares into swords. In order to help with his overseas adventure, they are forced to save money on buying fence posts by using trees as fence posts wherever possible. Given the locations of some trees, you are to help farmers try to create the largest pasture that is possible. Not all the trees will need to be used.

However, because you will oversee the construction of the pasture yourself, all the farmers want to know is how many cows they can put in the pasture. It is well known that a cow needs at least 50 square metres of pasture to survive.

Input

The first line of input contains a single integer, n (1 ≤ n ≤ 10000), containing the number of trees that grow on the available land. The next n lines contain the integer coordinates of each tree given as two integers x and y separated by one space (where -1000 ≤ x, y ≤ 1000). The integer coordinates correlate exactly to distance in metres (e.g., the distance between coordinate (10; 11) and (11; 11) is one metre).

Output

You are to output a single integer value, the number of cows that can survive on the largest field you can construct using the available trees.

题目大意:给n个点,求凸包,然后求这个凸包的面积。

思路:跟题目大意一样……

 #include <cstdio>
#include <cstring>
#include <iostream>
#include <algorithm>
#include <cmath>
using namespace std; const int MAXN = ;
const double EPS = 1e-;
const double PI = acos(-1.0);//3.14159265358979323846 inline int sgn(double x) {
return (x > EPS) - (x < -EPS);
} struct Point {
double x, y;
Point() {}
Point(double x, double y): x(x), y(y) {}
void read() {
scanf("%lf%lf", &x, &y);
}
bool operator == (const Point &rhs) const {
return sgn(x - rhs.x) == && sgn(y - rhs.y) == ;
}
bool operator < (const Point &rhs) const {
if(y != rhs.y) return y < rhs.y;
return x < rhs.x;
}
Point operator + (const Point &rhs) const {
return Point(x + rhs.x, y + rhs.y);
}
Point operator - (const Point &rhs) const {
return Point(x - rhs.x, y - rhs.y);
}
Point operator * (const int &b) const {
return Point(x * b, y * b);
}
Point operator / (const int &b) const {
return Point(x / b, y / b);
}
double length() const {
return sqrt(x * x + y * y);
}
Point unit() const {
return *this / length();
}
};
typedef Point Vector; double dist(const Point &a, const Point &b) {
return (a - b).length();
} double cross(const Point &a, const Point &b) {
return a.x * b.y - a.y * b.x;
}
//ret >= 0 means turn left
double cross(const Point &sp, const Point &ed, const Point &op) {
return sgn(cross(sp - op, ed - op));
} double area(const Point& a, const Point &b, const Point &c) {
return fabs(cross(a - c, b - c)) / ;
} struct Seg {
Point st, ed;
Seg() {}
Seg(Point st, Point ed): st(st), ed(ed) {}
void read() {
st.read(); ed.read();
}
};
typedef Seg Line; bool isOnSeg(const Seg &s, const Point &p) {
return (p == s.st || p == s.ed) ||
(((p.x - s.st.x) * (p.x - s.ed.x) < ||
(p.y - s.st.y) * (p.y - s.ed.y) < ) &&
sgn(cross(s.ed, p, s.st) == ));
} bool isIntersected(const Point &s1, const Point &e1, const Point &s2, const Point &e2) {
return (max(s1.x, e1.x) >= min(s2.x, e2.x)) &&
(max(s2.x, e2.x) >= min(s1.x, e1.x)) &&
(max(s1.y, e1.y) >= min(s2.y, e2.y)) &&
(max(s2.y, e2.y) >= min(s1.y, e1.y)) &&
(cross(s2, e1, s1) * cross(e1, e2, s1) >= ) &&
(cross(s1, e2, s2) * cross(e2, e1, s2) >= );
} bool isIntersected(const Seg &a, const Seg &b) {
return isIntersected(a.st, a.ed, b.st, b.ed);
} bool isParallel(const Seg &a, const Seg &b) {
return sgn(cross(a.ed - a.st, b.ed - b.st)) == ;
} //return Ax + By + C =0 's A, B, C
void Coefficient(const Line &L, double &A, double &B, double &C) {
A = L.ed.y - L.st.y;
B = L.st.x - L.ed.x;
C = L.ed.x * L.st.y - L.st.x * L.ed.y;
} Point intersection(const Line &a, const Line &b) {
double A1, B1, C1;
double A2, B2, C2;
Coefficient(a, A1, B1, C1);
Coefficient(b, A2, B2, C2);
Point I;
I.x = - (B2 * C1 - B1 * C2) / (A1 * B2 - A2 * B1);
I.y = (A2 * C1 - A1 * C2) / (A1 * B2 - A2 * B1);
return I;
} bool isEqual(const Line &a, const Line &b) {
double A1, B1, C1;
double A2, B2, C2;
Coefficient(a, A1, B1, C1);
Coefficient(b, A2, B2, C2);
return sgn(A1 * B2 - A2 * B1) == && sgn(A1 * C2 - A2 * C1) == && sgn(B1 * C2 - B2 * C1) == ;
} struct Poly {
int n;
Point p[MAXN];//p[n] = p[0]
void init(Point *pp, int nn) {
n = nn;
for(int i = ; i < n; ++i) p[i] = pp[i];
p[n] = p[];
}
double area() {
if(n < ) return ;
double s = p[].y * (p[n - ].x - p[].x);
for(int i = ; i < n; ++i)
s += p[i].y * (p[i - ].x - p[i + ].x);
return s / ;
}
}; void Graham_scan(Point *p, int n, int *stk, int &top) {//stk[0] = stk[top]
sort(p, p + n);
top = ;
stk[] = ; stk[] = ;
for(int i = ; i < n; ++i) {
while(top && cross(p[i], p[stk[top]], p[stk[top - ]]) >= ) --top;
stk[++top] = i;
}
int len = top;
stk[++top] = n - ;
for(int i = n - ; i >= ; --i) {
while(top != len && cross(p[i], p[stk[top]], p[stk[top - ]]) >= ) --top;
stk[++top] = i;
}
} /*******************************************************************************************/ Point p[MAXN];
Poly poly;
int stk[MAXN], top;
int n, T; int solve() {
poly.n = top;
for(int i = ; i <= top; ++i) poly.p[i] = p[stk[i]];
double ret = poly.area() + EPS;
return int(ret / );
} int main() {
scanf("%d", &n);
for(int i = ; i < n; ++i) p[i].read();
Graham_scan(p, n, stk, top);
printf("%d\n", solve());
}

POJ 3348 Cows(凸包+多边形面积)的更多相关文章

  1. POJ 3348 Cows 凸包 求面积

    LINK 题意:给出点集,求凸包的面积 思路:主要是求面积的考察,固定一个点顺序枚举两个点叉积求三角形面积和除2即可 /** @Date : 2017-07-19 16:07:11 * @FileNa ...

  2. poj3348 Cows 凸包+多边形面积 水题

    /* poj3348 Cows 凸包+多边形面积 水题 floor向下取整,返回的是double */ #include<stdio.h> #include<math.h> # ...

  3. poj 3348 Cows 凸包 求多边形面积 计算几何 难度:0 Source:CCC207

    Cows Time Limit: 2000MS   Memory Limit: 65536K Total Submissions: 7038   Accepted: 3242 Description ...

  4. POJ 3348 - Cows 凸包面积

    求凸包面积.求结果后不用加绝对值,这是BBS()排序决定的. //Ps 熟练了template <class T>之后用起来真心方便= = //POJ 3348 //凸包面积 //1A 2 ...

  5. POJ 3348 Cows (凸包模板+凸包面积)

    Description Your friend to the south is interested in building fences and turning plowshares into sw ...

  6. POJ 3348:Cows 凸包+多边形面积

    Cows Time Limit: 2000MS   Memory Limit: 65536K Total Submissions: 7739   Accepted: 3507 Description ...

  7. POJ 3348 Cows [凸包 面积]

    Cows Time Limit: 2000MS   Memory Limit: 65536K Total Submissions: 9022   Accepted: 3992 Description ...

  8. POJ 3348 Cows | 凸包模板题

    题目: 给几个点,用绳子圈出最大的面积养牛,输出最大面积/50 题解: Graham凸包算法的模板题 下面给出做法 1.选出x坐标最小(相同情况y最小)的点作为极点(显然他一定在凸包上) 2.其他点进 ...

  9. POJ 3348 Cows | 凸包——童年的回忆(误)

    想当年--还是邱神给我讲的凸包来着-- #include <cstdio> #include <cstring> #include <cmath> #include ...

  10. poj 3348 Cow 凸包面积

    Cows Time Limit: 2000MS   Memory Limit: 65536K Total Submissions: 8122   Accepted: 3674 Description ...

随机推荐

  1. Vue中把从后端取出的时间进行截取

    未截取前 截取后 方法: </div>{{times}}</div> export default{ data() { return { // getTime储存从服务器请求回 ...

  2. 团体队列 UVA540 Team Queue

    题目描述 有t个团队的人正在排一个长队.每次新来一个人时,如果他有队友在排队,那么新人会插队到最后一个队友的身后.如果没有任何一个队友排队,则他会被排到长队的队尾. 输入每个团队中所有队员的编号,要求 ...

  3. 基于DCT的图片数字水印实验

    1. 实验类别 设计型实验:MATLAB设计并实现基于DCT的图像数字水印算法. 2. 实验目的 了解基于DCT的图像数字水印技术,掌握基于DCT系数关系的图像水印算法原理,设计并实现一种基于DCT的 ...

  4. 浅析MySQL主从复制技术(异步复制、同步复制、半同步复制)

      Preface       As we all know,there're three kinds of replication in MySQL nowadays.Such as,asynchr ...

  5. 如何理解Hibernate的持久化?

    学习Hibernate,必须要理解什么是持久化?结合了一下网上的各位大佬的观点和自己的理解: 持久化概念 持久化是将程序数据在持久状态和瞬时状态间转换的机制.通俗的讲,就是瞬时数据(比如内存中的数据, ...

  6. Dubbo 改造普通单体项目

    一.新建普通maven项目 1.首先,新建3个普通maven商城项目,模拟以往常见的Java单体应用开发,mall-interface是存放接口和公共代码部分,order-service-consum ...

  7. python名称空间介绍

    python名称空间介绍 名称空间 python 中名称空间分三种: 内置名称空间 全局名称空间 局部名称空间 内置名称空间: 原码里面的一些函数都是存在这个内存空间中,任何模块均可访问它,它存放着内 ...

  8. 在vue中如何实现购物车checkbox的三级联动

    最近用vue写一个电商项目,自然就少不了要写一个购物车的相关页面,功能完整的购物车的checkbox应该是三级联动的,1级checkbox是选中购物车中所有的商品,2级checkbox是选中某个店铺下 ...

  9. 同步请求和异步请求的区别(理解ajax用)

    同步请求:发送方发送数据包后,等待接收方发回响应之后,才能发送下一个数据包的通信方式. 异步请求:发送方发送数据包后,不用等待接收方发回响应,就可以发送下一个数据包的通信方式. 同步通信:要求通信双方 ...

  10. C++实现json字符串与map的转换

    开源资源库 jsoncpp-src-0.5.0.tar.gz:https://sourceforge.net/projects/jsoncpp/ jsoncpp-master.ziphttps://g ...