POJ 3348 Cows(凸包+多边形面积)
Description
Your friend to the south is interested in building fences and turning plowshares into swords. In order to help with his overseas adventure, they are forced to save money on buying fence posts by using trees as fence posts wherever possible. Given the locations of some trees, you are to help farmers try to create the largest pasture that is possible. Not all the trees will need to be used.
However, because you will oversee the construction of the pasture yourself, all the farmers want to know is how many cows they can put in the pasture. It is well known that a cow needs at least 50 square metres of pasture to survive.
Input
The first line of input contains a single integer, n (1 ≤ n ≤ 10000), containing the number of trees that grow on the available land. The next n lines contain the integer coordinates of each tree given as two integers x and y separated by one space (where -1000 ≤ x, y ≤ 1000). The integer coordinates correlate exactly to distance in metres (e.g., the distance between coordinate (10; 11) and (11; 11) is one metre).
Output
You are to output a single integer value, the number of cows that can survive on the largest field you can construct using the available trees.
题目大意:给n个点,求凸包,然后求这个凸包的面积。
思路:跟题目大意一样……
#include <cstdio>
#include <cstring>
#include <iostream>
#include <algorithm>
#include <cmath>
using namespace std; const int MAXN = ;
const double EPS = 1e-;
const double PI = acos(-1.0);//3.14159265358979323846 inline int sgn(double x) {
return (x > EPS) - (x < -EPS);
} struct Point {
double x, y;
Point() {}
Point(double x, double y): x(x), y(y) {}
void read() {
scanf("%lf%lf", &x, &y);
}
bool operator == (const Point &rhs) const {
return sgn(x - rhs.x) == && sgn(y - rhs.y) == ;
}
bool operator < (const Point &rhs) const {
if(y != rhs.y) return y < rhs.y;
return x < rhs.x;
}
Point operator + (const Point &rhs) const {
return Point(x + rhs.x, y + rhs.y);
}
Point operator - (const Point &rhs) const {
return Point(x - rhs.x, y - rhs.y);
}
Point operator * (const int &b) const {
return Point(x * b, y * b);
}
Point operator / (const int &b) const {
return Point(x / b, y / b);
}
double length() const {
return sqrt(x * x + y * y);
}
Point unit() const {
return *this / length();
}
};
typedef Point Vector; double dist(const Point &a, const Point &b) {
return (a - b).length();
} double cross(const Point &a, const Point &b) {
return a.x * b.y - a.y * b.x;
}
//ret >= 0 means turn left
double cross(const Point &sp, const Point &ed, const Point &op) {
return sgn(cross(sp - op, ed - op));
} double area(const Point& a, const Point &b, const Point &c) {
return fabs(cross(a - c, b - c)) / ;
} struct Seg {
Point st, ed;
Seg() {}
Seg(Point st, Point ed): st(st), ed(ed) {}
void read() {
st.read(); ed.read();
}
};
typedef Seg Line; bool isOnSeg(const Seg &s, const Point &p) {
return (p == s.st || p == s.ed) ||
(((p.x - s.st.x) * (p.x - s.ed.x) < ||
(p.y - s.st.y) * (p.y - s.ed.y) < ) &&
sgn(cross(s.ed, p, s.st) == ));
} bool isIntersected(const Point &s1, const Point &e1, const Point &s2, const Point &e2) {
return (max(s1.x, e1.x) >= min(s2.x, e2.x)) &&
(max(s2.x, e2.x) >= min(s1.x, e1.x)) &&
(max(s1.y, e1.y) >= min(s2.y, e2.y)) &&
(max(s2.y, e2.y) >= min(s1.y, e1.y)) &&
(cross(s2, e1, s1) * cross(e1, e2, s1) >= ) &&
(cross(s1, e2, s2) * cross(e2, e1, s2) >= );
} bool isIntersected(const Seg &a, const Seg &b) {
return isIntersected(a.st, a.ed, b.st, b.ed);
} bool isParallel(const Seg &a, const Seg &b) {
return sgn(cross(a.ed - a.st, b.ed - b.st)) == ;
} //return Ax + By + C =0 's A, B, C
void Coefficient(const Line &L, double &A, double &B, double &C) {
A = L.ed.y - L.st.y;
B = L.st.x - L.ed.x;
C = L.ed.x * L.st.y - L.st.x * L.ed.y;
} Point intersection(const Line &a, const Line &b) {
double A1, B1, C1;
double A2, B2, C2;
Coefficient(a, A1, B1, C1);
Coefficient(b, A2, B2, C2);
Point I;
I.x = - (B2 * C1 - B1 * C2) / (A1 * B2 - A2 * B1);
I.y = (A2 * C1 - A1 * C2) / (A1 * B2 - A2 * B1);
return I;
} bool isEqual(const Line &a, const Line &b) {
double A1, B1, C1;
double A2, B2, C2;
Coefficient(a, A1, B1, C1);
Coefficient(b, A2, B2, C2);
return sgn(A1 * B2 - A2 * B1) == && sgn(A1 * C2 - A2 * C1) == && sgn(B1 * C2 - B2 * C1) == ;
} struct Poly {
int n;
Point p[MAXN];//p[n] = p[0]
void init(Point *pp, int nn) {
n = nn;
for(int i = ; i < n; ++i) p[i] = pp[i];
p[n] = p[];
}
double area() {
if(n < ) return ;
double s = p[].y * (p[n - ].x - p[].x);
for(int i = ; i < n; ++i)
s += p[i].y * (p[i - ].x - p[i + ].x);
return s / ;
}
}; void Graham_scan(Point *p, int n, int *stk, int &top) {//stk[0] = stk[top]
sort(p, p + n);
top = ;
stk[] = ; stk[] = ;
for(int i = ; i < n; ++i) {
while(top && cross(p[i], p[stk[top]], p[stk[top - ]]) >= ) --top;
stk[++top] = i;
}
int len = top;
stk[++top] = n - ;
for(int i = n - ; i >= ; --i) {
while(top != len && cross(p[i], p[stk[top]], p[stk[top - ]]) >= ) --top;
stk[++top] = i;
}
} /*******************************************************************************************/ Point p[MAXN];
Poly poly;
int stk[MAXN], top;
int n, T; int solve() {
poly.n = top;
for(int i = ; i <= top; ++i) poly.p[i] = p[stk[i]];
double ret = poly.area() + EPS;
return int(ret / );
} int main() {
scanf("%d", &n);
for(int i = ; i < n; ++i) p[i].read();
Graham_scan(p, n, stk, top);
printf("%d\n", solve());
}
POJ 3348 Cows(凸包+多边形面积)的更多相关文章
- POJ 3348 Cows 凸包 求面积
LINK 题意:给出点集,求凸包的面积 思路:主要是求面积的考察,固定一个点顺序枚举两个点叉积求三角形面积和除2即可 /** @Date : 2017-07-19 16:07:11 * @FileNa ...
- poj3348 Cows 凸包+多边形面积 水题
/* poj3348 Cows 凸包+多边形面积 水题 floor向下取整,返回的是double */ #include<stdio.h> #include<math.h> # ...
- poj 3348 Cows 凸包 求多边形面积 计算几何 难度:0 Source:CCC207
Cows Time Limit: 2000MS Memory Limit: 65536K Total Submissions: 7038 Accepted: 3242 Description ...
- POJ 3348 - Cows 凸包面积
求凸包面积.求结果后不用加绝对值,这是BBS()排序决定的. //Ps 熟练了template <class T>之后用起来真心方便= = //POJ 3348 //凸包面积 //1A 2 ...
- POJ 3348 Cows (凸包模板+凸包面积)
Description Your friend to the south is interested in building fences and turning plowshares into sw ...
- POJ 3348:Cows 凸包+多边形面积
Cows Time Limit: 2000MS Memory Limit: 65536K Total Submissions: 7739 Accepted: 3507 Description ...
- POJ 3348 Cows [凸包 面积]
Cows Time Limit: 2000MS Memory Limit: 65536K Total Submissions: 9022 Accepted: 3992 Description ...
- POJ 3348 Cows | 凸包模板题
题目: 给几个点,用绳子圈出最大的面积养牛,输出最大面积/50 题解: Graham凸包算法的模板题 下面给出做法 1.选出x坐标最小(相同情况y最小)的点作为极点(显然他一定在凸包上) 2.其他点进 ...
- POJ 3348 Cows | 凸包——童年的回忆(误)
想当年--还是邱神给我讲的凸包来着-- #include <cstdio> #include <cstring> #include <cmath> #include ...
- poj 3348 Cow 凸包面积
Cows Time Limit: 2000MS Memory Limit: 65536K Total Submissions: 8122 Accepted: 3674 Description ...
随机推荐
- oracle入门(一)
### 一.体系结构 1. 数据库 : 只有一个数据库 2. 实例 : 后台运行的一个进程 3. 表空间: 逻辑存储单位 4. 数据文件: 物理存储单位 5. 用户:面向用户管理,由用户来管理表空间, ...
- Illegal modifier for parameter userMapper; only final is permitted
报错的原因是 package com.chen.service.impl; import java.io.IOException; import java.io.InputStream; import ...
- C# Oracle批量插入数据进度条制作
前言 由于项目需求,需要将Excel中的数据进过一定转换导入仅Oracle数据库中.考虑到当Excel数据量较大时,循环Insert语句效率太低,故采用批量插入的方法.在插入操作运行时,会造成系统短暂 ...
- css:文章标题过长时,使用省略号
html代码 <ul> <li><a href="" target="_blank">我是文章1,现在标题过长,使用css加 ...
- 微信小程序上滑加载更多
onReachBottom: function () { var that = this var limit = that.data.limit var count = that.data.count ...
- (待整理)flume操作----------hivelogsToHDFS案例----------运行时,发生NoClassDefFoundError错误
1. 2.错误日志 命令为 bin/flume-ng agent --name a2 --conf conf/ --conf-file job/file-hdfs.conf Info: Sourcin ...
- 1.Python是什么
前言 这里只是根据个人的理解而谈,庸俗浅薄,不是科学定义,也可以认为是假装自己理解啦,掩耳盗铃罢了.知无涯是多么的恐怖,哈哈 计算机语言 此处的语言不同于我们生活中所说的语言,因为生活中的语言 ...
- Java 反射 (Class、ClassLoader、Constructor、Method、Field)
反射是Java中一个非常重要.非常强大的机制.曾看到一句话“反射是框架的灵魂”,初学时不懂,等到学完框架之后才慢慢理解其意. 什么是反射?我们先通过几个类和示例来初步体会一下反射. 一.ClassLo ...
- Milking Order
Milking Order 题意:给出m个描述状态,其中包含若干个边的关系,问最多能取x (x<=m)个状态,使得形成的图没有环.就是说取x个状态,用状态中的关系建边,其中不能有环. 题解:最大 ...
- Eclipse安装Java Class反编译插件
第一步:没有安装之前 第二步:从Eclipse Marketplace里,安装反编译插件jadclipse. 第三步:安装反编译插件之后,多了一个查看器,把"类反编译查看器"设置为 ...