bzoj 1406 数论
首先问题的意思就是在找出n以内的所有x^2%n=1的数,那么我们可以得到(x+1)(x-1)=y*n,那么我们知道n|(x+1)(x-1),我们设n=a*b,那么我们对于任意的a,我们满足n%a==0,我们可以求出b,我们可以使x+1|a,x-1|b,然后我们可以构造所有满足被b整除的数,然后判断是否能被a整除, 然后再枚举x+1|b,x-1|a的情况,假设一组合法解不能拆开后被a,b分别整除,那么对于另外的a,b我们肯定可以再次枚举出这个解,然后对于相同的解用set去下重就可以了。
反思:手残打错了符号= =。
/**************************************************************
Problem: 1406
User: BLADEVIL
Language: C++
Result: Accepted
Time:0 ms
Memory:808 kb
****************************************************************/
//By BLADEVIL
#include <cstdio>
#include <set>
using namespace std;
int n;
int main()
{
set<int>tree;
scanf("%d",&n);
for (int a=;a*a<=n;a++)
if (!(n%a)) {
int b=n/a;
for (int i=;i<=n;i+=b) if (!((i+)%a)) tree.insert(i);
for (int i=b-;i<=n;i+=b) if (!((i-)%a)) tree.insert(i);
}
set<int>::iterator p;
if (!tree.size())
printf("None\n"); else
for (p=tree.begin();p!=tree.end();p++)
printf("%d\n",*p);
return ;
}
bzoj 1406 数论的更多相关文章
- BZOJ 1406: [AHOI2007]密码箱
二次联通门 : BZOJ 1406: [AHOI2007]密码箱 /* BZOJ 1406: [AHOI2007]密码箱 数论 要求 x^2 ≡ 1 (mod n) 可以转换为 x ^ 2 - k * ...
- BZOJ 1406: [AHOI2007]密码箱( 数论 )
(x+1)(x-1) mod N = 0, 枚举N的>N^0.5的约数当作x+1或者x-1... ------------------------------------------------ ...
- BZOJ 1406 密码箱(数论)
很简洁的题目.求出x^2%n=1的所有x<=n的值. n<=2e9. 直接枚举x一定是超时的. 看看能不能化成有性质的式子. 有 (x+1)(x-1)%n==0,设n=a*b,那么一定有x ...
- bzoj 1406: [AHOI2007]密码箱 二次剩餘
1406: [AHOI2007]密码箱 Time Limit: 5 Sec Memory Limit: 64 MBSubmit: 701 Solved: 396[Submit][Status] D ...
- BZOJ 4815 数论
今年的重庆省选? 具体就是,对于每次修改,A[p,q]这个位置, 设d=gcd(p,q) ,则 gcd为d的每一个格子都会被修改,且他们之间有个不变的联系 A[p,q]/p/q==A[k,t]/k/ ...
- BZOJ 2219 数论之神 (CRT推论+BSGS+原根指标)
看了Po神的题解一下子就懂了A了! 不过Po神的代码出锅了-solve中"d-temp"并没有什么用QwQQwQQwQ-应该把模数除以p^temp次方才行. 来自BZOJ讨论板的h ...
- BZOJ 1406 密码箱
直接两层枚举就行了. 避免排序可以用set. #include<iostream> #include<cstdio> #include<cstring> #incl ...
- BZOJ 2219: 数论之神
题目:http://www.lydsy.com/JudgeOnline/problem.php?id=2219 N次剩余+CRT... 就是各种奇怪的分类讨论.. #include<cstrin ...
- bzoj 1406
%%% PoPoQQQ x^2=kn+1 x^2-1=kn (x+1)(x-1)=kn 令x+1=k1*n1,x-1=k2*n2,其中k1k2=k,n1n2=n 因此我们可以枚举n的约数中所有大于等于 ...
随机推荐
- C# .net 调用QQ邮箱
public static void QQfs() { try { MailMessage mm = new MailMessage(); MailAddress Fromma = new MailA ...
- RHEL 6.4(i386)安装MySQL 5.6的方法
- cURL和file_get_contents实现模拟post请求
以前面试时候,面试官问过我后端有没有跨域问题,但是不敢肯定,现在可以肯定的说没有. 不文用php的cURL和file_get_contents方法分别实现后端跨域.本文场景也是在tp5下实现的. 一, ...
- Vue脚手架开发使用sass
vue默认采用的是原生的css,如果想要使用css预编译工具,比如sass,需要下载对应的scss的loader, 具体是 npm install --save-dev sass-loader npm ...
- Swoole和Swoft的那些事 (Http/Rpc服务篇)
https://www.jianshu.com/p/4c0f625d5e11 Swoft在PHPer圈中是一个门槛较高的Web框架,不仅仅由于框架本身带来了很多新概念和前沿的设计,还在于Swoft是一 ...
- 《Effective C#》快速笔记(四)- 使用框架
.NET 是一个类库,你了解的越多,自己需要编写的代码就越少. 目录 三十.使用重写而不是事件处理函数 三十一.使用 IComparable<T> 和 IComparer<T> ...
- 发生dev_queue_xmit的时候,全部都是从ip_finish_output中来的吗
也就是说啊,内核中的收发包的路径,很可能是经理driver_recv --> tcp -->driver_send这样一个过程,是个很长的路径呢...... 从dev_queue_xmit ...
- 网卡多ip 再看arp; arp队列也会缓存skb
[结论] 当协议失效的时候,skb会挂载arp的neigt的一个链表上,然后直接返回了,相当于数据包发下了,当arp收到数据包去修复neigh的目的地址的时候,会把之前所有的neihe中等待的skb全 ...
- Oracle基础 表分区
Oracle基础 表分区 一.表分区 (一)表分区的分类 1.范围分区(range) 2.散列分区(hash) 3.列表分区(list) 4.复合分区:范围-哈希(range-hash).范围-列表( ...
- [OS] 生产者-消费者问题(有限缓冲问题)
·最简单的情形--(一个生产者 + 一个消费者 + 一个大小为1的有限缓冲) 首先来分析其中的同步关系: ·必须在生产者放入一个产品之后,消费者才能够从缓冲中取出产品来消费.·只有在消费者从缓冲区中取 ...