可以大胆猜想的一点是,只要有不少于一个长度为k的颜色相同子串,方案就是合法的。

  直接算有点麻烦,考虑减去不合法的方案。

  一个正(xue)常(sha)的思路是枚举序列被分成的段数,问题变为用一些1~k-1的数组成n的方案数,这显然是可以容斥的。但好像对每一种都进行容斥就不太好办了。

  暴力二维dp是很容易想到的。考虑去掉一维的暴力,设f[i]为前i位不合法染色方案数,枚举这一段的长度转移。这显然是可以前缀和的。

#include<iostream>
#include<cstdio>
#include<cmath>
#include<cstdlib>
#include<cstring>
#include<algorithm>
using namespace std;
int read()
{
int x=,f=;char c=getchar();
while (c<''||c>'') {if (c=='-') f=-;c=getchar();}
while (c>=''&&c<='') x=(x<<)+(x<<)+(c^),c=getchar();
return x*f;
}
#define N 1000010
#define P 1000000007
int n,m,k,f[N],ans;
int ksm(int a,int k)
{
int s=;
for (;k;k>>=,a=1ll*a*a%P) if (k&) s=1ll*s*a%P;
return s;
}
int main()
{
#ifndef ONLINE_JUDGE
freopen("bzoj5190.in","r",stdin);
freopen("bzoj5190.out","w",stdout);
const char LL[]="%I64d\n";
#else
const char LL[]="%lld\n";
#endif
n=read(),m=read(),k=read();
ans=ksm(m,n);
for (int i=;i<=n;i++)
if (i-k+>) f[i]=(f[i-]+1ll*(f[i-]-f[i-k])*(m-))%P;
else f[i]=(f[i-]+1ll*f[i-]*(m-)+m)%P;
cout<<((ans-f[n]+f[n-])%P+P)%P;
return ;
}

BZOJ5190 Usaco2018 Jan Stamp Painting(动态规划)的更多相关文章

  1. 【BZOJ5188】 [Usaco2018 Jan]MooTube

    BZOJ5188 [Usaco2018 Jan]MooTube 突然发现BZOJ没有题目,放题面. 题意翻译 题面描述 在业余时间,Farmer John创建了一个新的视频共享服务,他将其命名为Moo ...

  2. [USACO18JAN]Stamp Painting

    Description: Bessie想拿\(M\) 种颜色的长为\(K\) 的图章涂一个长为\(N\) 的迷之画布.假设他选择涂一段区间,则这段区间长度必须为\(K\) ,且涂完后该区间颜色全变成图 ...

  3. luogu4187 [USACO18JAN]Stamp Painting (dp)

    可以发现,只要存在连续k个相同的,这个情况就一定是合法情况 然而这个不太好算,我们算不存在k个相同的,然后用$m^n$把它减掉 设f[i]为前i个,没有连续k个的 显然$f[i]=m^i ,i< ...

  4. 2018.10.25 洛谷P4187 [USACO18JAN]Stamp Painting(计数dp)

    传送门 其实本来想做组合数学的2333. 谁知道是道dpdpdp. 唉只能顺手做了 还是用真难则反的思想. 这题我们倒着考虑,只需要求出不合法方案数就行了. 这个显然是随便dpdpdp的. f[i]f ...

  5. BZOJ5188: [Usaco2018 Jan]MooTube 并查集+离线处理

    BZOJ又不给题面... Luogu的翻译看不下去... 题意简述 有一个$n$个节点的树,边有权值,定义两个节点之间的距离为两点之间的路径上的最小边权 给你$Q$个询问,问你与点$v$的距离超过$k ...

  6. BZOJ5189: [Usaco2018 Jan]Cow at Large 贪心+LCA

    BZOJ没有题面QAQ,题目链接 洛谷有:题目链接 这题首先要读懂题..(洛谷的翻译有点迷 就是指定根节点,然后可以在叶子结点放个人,然后奶牛在根,问最少要在叶子结点放多少人才能让奶牛走不到叶子结点( ...

  7. Bzoj5188/洛谷P4185 [Usaco2018 Jan]MooTube(并查集)

    题面 Bzoj 洛谷 题解 最暴力的方法是直接判两个点之间的路径最小值是否\(\geq k\),用\(Dijkstra\)可以做到该算法最快效率,但是空间复杂度始终是\(O(n^2)\)的,会\(ML ...

  8. 「BZOJ 5188」「Usaco2018 Jan」MooTube

    题目链接 luogu bzoj \(Describe\) 有一个\(n\)个节点的树,边有权值,定义两个节点之间的距离为两点之间的路径上的最小边权 给你\(Q\)个询问,问你与点\(v\)的距离大于等 ...

  9. 5187: [Usaco2018 Jan]Sprinklers

    #include<cstdio> #include<iostream> #include<cstring> #include<cstdlib> #inc ...

随机推荐

  1. MyBatis-mybatis全局映射文件解析

    全局配置文件为mybatis-config.xml 1.properties标签 <properties resource="dbconfig.properties"> ...

  2. Jmeter使用之:高效组织接口自动化用例技巧

    Jmeter怎么使用的文章多如牛毛,但怎么组织好测试用例,则几乎很难看到.在本文,我将把Jmeter下怎么组织测试用例的几点心得分享给大家,希望能给你一些帮助或启示. 1.善用“逻辑控制器”中的“简单 ...

  3. 【转】关于cocos2dx+lua注册事件函数详解

    转载:http://www.taikr.com/article/1605 registerScriptTouchHandler 注册触屏事件registerScriptTapHandler注册点击事件 ...

  4. 题解 CF191C 【Fools and Roads】

    树上差分半裸题 常规思路是进行三次DFS,然后常规运算即可 这里提供两次dfs的思路(wyz tql orz) 我们以样例2为例 我们考虑任意一条路径,令其起点为u终点为v,每走一次当前路径则v的访问 ...

  5. Spring Cloud(九):配置中心(消息总线)【Finchley 版】

    Spring Cloud(九):配置中心(消息总线)[Finchley 版]  发表于 2018-04-19 |  更新于 2018-05-07 |  我们在 Spring Cloud(七):配置中心 ...

  6. lintcode671 循环单词

    循环单词   The words are same rotate words if rotate the word to the right by loop, and get another. Cou ...

  7. JDK源码分析:Object.java

    一. 序言 Object.java是一切类的基类,所以了解该类有一定的必要 二 .属性及方法分析 方法列表: private static native void registerNatives(); ...

  8. Linux 150命令之 文件和目录操作命令 ls

    文件和目录操作命令 ls 查看文件和目录查看显示详信息 ls 工具的参数 ls -l 查看文件详细信息 ls -h 查看文件的大小 ls -ld 只查看目录信息 ls –F 给不同文件加上不同标记 l ...

  9. 安装sqoop 1.99.4

    参考http://sqoop.apache.org/docs/1.99.4/Installation.html 1.简介 sqoop2分为server和client两部分.server作为maprde ...

  10. Agri-Net(最小生成树)

    Description Farmer John has been elected mayor of his town! One of his campaign promises was to brin ...