……没啥可说的。最大权闭合子图,跑下dinic就好了……

#include <bits/stdc++.h>
using namespace std;
#define maxn 500000
#define int long long
#define INF 99999999999LL
int n, sum, S, T, lev[maxn]; int read()
{
int x = , k = ;
char c; c = getchar();
while(c < '' || c > '') { if(c == '-') k = -; c = getchar(); }
while(c >= '' && c <= '') x = x * + c - '', c = getchar();
return x * k;
} struct edge
{
int cnp, to[maxn], f[maxn], last[maxn], head[maxn], cur[maxn];
edge() { cnp = ; }
void add(int u, int v, int fl)
{
to[cnp] = v, f[cnp] = fl, last[cnp] = head[u], head[u] = cnp ++;
to[cnp] = u, f[cnp] = , last[cnp] = head[v], head[v] = cnp ++;
}
}E1; bool bfs()
{
memset(lev, , sizeof(lev));
queue <int> q; q.push(S); lev[S] = ;
while(!q.empty())
{
int u = q.front(); q.pop();
for(int i = E1.head[u]; i; i = E1.last[i])
{
int v = E1.to[i];
if(!lev[v] && E1.f[i])
{ lev[v] = lev[u] + ; q.push(v); }
}
if(lev[T]) return ;
}
return ;
} int dfs(int u, int nf)
{
if(u == T) return nf;
int tf = ;
for(int i = E1.cur[u]; i; i = E1.last[i])
{
int v = E1.to[i];
if(lev[v] == lev[u] + && E1.f[i])
{
int af = dfs(v, min(nf, E1.f[i]));
tf += af, nf -= af;
E1.f[i] -= af, E1.f[i ^ ] += af;
if(!nf) return tf;
E1.cur[u] = i;
}
}
return tf;
} int Dinic()
{
int ret = ;
while(bfs())
{
memcpy(E1.cur, E1.head, sizeof(E1.head));
ret += dfs(S, INF);
}
return ret;
} signed main()
{
n = read(); S = , T = n + ;
for(int i = ; i <= n; i ++)
{
int x = read();
if(x > ) sum += x, E1.add(i, T, x);
else if(x <= ) E1.add(S, i, -x);
}
for(int i = ; i <= n; i ++)
for(int j = ; i * j <= n; j ++)
if(i * j <= n) E1.add(i, i * j, INF);
printf("%lld\n", sum - Dinic());
return ;
}

【题解】Atcoder ARC#85 E-MUL的更多相关文章

  1. [题解] Atcoder ARC 142 D Deterministic Placing 结论,DP

    题目 (可能有点长,但是请耐心看完,个人认为比官方题解好懂:P) 首先需要注意,对于任意节点i上的一个棋子,如果在一种走法中它走到了节点j,另一种走法中它走到了节点k,那么这两种走法进行完后,棋子占据 ...

  2. [题解] Atcoder ARC 142 E Pairing Wizards 最小割

    题目 建图很妙,不会. 考虑每一对要求合法的巫师(x,y),他们两个的\(a\)必须都大于\(min(b_x,b_y)\).所以在输入的时候,如果\(a_x\)或者\(a_y\)小于\(min(b_x ...

  3. [题解] Atcoder Regular Contest ARC 147 A B C D E 题解

    点我看题 A - Max Mod Min 非常诈骗.一开始以为要观察什么神奇的性质,后来发现直接模拟就行了.可以证明总操作次数是\(O(nlog a_i)\)的.具体就是,每次操作都会有一个数a被b取 ...

  4. 【题解】Atcoder ARC#96 F-Sweet Alchemy

    首先,我们发现每一个节点所选择的次数不好直接算,因为要求一个节点被选择的次数大于等于父亲被选择的次数,且又要小于等于父亲被选择的次数 \(+D\).既然如此,考虑一棵差分的树,规定每一个节点被选择的次 ...

  5. 【题解】Atcoder ARC#90 F-Number of Digits

    Atcoder刷不动的每日一题... 首先注意到一个事实:随着 \(l, r\) 的增大,\(f(r) - f(l)\) 会越来越小.考虑暴力处理出小数据的情况,我们可以发现对于左端点 \(f(l) ...

  6. 【题解】Atcoder ARC#94 F-Normalization

    再次膜拜此强题!神级性质之不可能发现系列收藏++:首先,对于长度<=3的情况,我们采取爆搜答案(代码当中是打表).对于长度>=4的情况,则有如下几条玄妙的性质: 首先我们将 a, b, c ...

  7. [题解] Atcoder Regular Contest ARC 148 A B C E 题解

    点我看题 题目质量一言难尽(至少对我来说 所以我不写D的题解了 A - mod M 发现如果把M选成2,就可以把答案压到至多2.所以答案只能是1或2,只要判断答案能不能是1即可.如果答案是1,那么M必 ...

  8. [题解] Atcoder Regular Contest ARC 151 A B C D E 题解

    点我看题 昨天刚打的ARC,题目质量还是不错的. A - Equal Hamming Distances 对于一个位置i,如果\(S_i=T_i\),那么不管\(U\)的这个位置填什么,对到\(S\) ...

  9. 【题解】 AtCoder ARC 076 F - Exhausted? (霍尔定理+线段树)

    题面 题目大意: 给你\(m\)张椅子,排成一行,告诉你\(n\)个人,每个人可以坐的座位为\([1,l]\bigcup[r,m]\),为了让所有人坐下,问至少还要加多少张椅子. Solution: ...

随机推荐

  1. Unicode编码相关概念

    1.Unicode是一种字符映射方案,这种映射并不是编码(即还没有到二进制机器码层面),而是像一个电话本一样,把全世界所有语言使用的字符,都映射成一个"u+"开头的数字(在JAVA ...

  2. 欧陆词典PEST2词库

    欧陆词典PEST2单词列表,其中大概1900+单词,可能有少数几个没有录入,但不影响使用!

  3. PLSQL-包函数存储过程

    包: 包是PLSQL中多个单元的逻辑组合,他将过程组合在一个包内容,以供用户调用,使用后,不需要程序员频繁的修改程序,可以保持程序的逻辑完整性,对包中的过程重新定义或者编译,以便修改部分功能,从而更好 ...

  4. Qt-网络与通信-TCP版本聊天程序

    代码在公司,考不出来,智能用书里自带的例子来写了. 不过这个TCP版本的程序并没有出来书上的效果,具体问题出在哪里还没有找到,运行书里自带的代码也是这样. 另外发现一个问题 Qt5.8.0VS版本对中 ...

  5. Jmeter接口测试(二)工具介绍

    一.Jmeter文件目录介绍 ◆ bin:可执行文件目录 Bin 目录文件 jmeter.bat:windows 的启动文件 jmeter.log:日志文件 jmeter.sh:linux 的启动文件 ...

  6. go通过第三方库 mahonia gbk 转utf8

    go get github.com/axgle/mahonia dec := mahonia.NewDecoder("GBK")ret:=dec.ConvertString(res ...

  7. TW实习日记:第26天

    这周组长休年假去了,并且之前主要负责的项目也已经上线了,可以说没那么忙了,手头就一个协助别的组做的移动端项目.可是这个项目特别坑,由于网端是9年前的项目,导致后台的接口有非常多的问题,并且入参多得令人 ...

  8. OpenMPI源码剖析4:rte.h 头文件的说明信息

    上一篇文章中说道,我们在 rte.h 中发现了有价值的说明: 我们一块一块来分析,首先看到第一块,关于 Process name Object: * (a) Process name objects ...

  9. ThinkPHP - 3 - IDE选择以及Eclipse PDT打开ThinkPHP项目

    ThinkPHP框架已部署到SAE(新浪云),且代码已获取到本地.眼前面临的问题就是,对ThinkPHP项目选择哪种开发工具(IDE)? 经过简单的查找比较,以及电脑里已装有Eclipse的因素,遂决 ...

  10. ZOJ 3644 Kitty's Game(数论+DP)

    Description Kitty is a little cat. She is crazy about a game recently. There arenscenes in the game( ...