[SCOI2008]天平 差分约束
题解:
差分约束学得实在是太烂了,,,,QAQ
这里先记下:
a - b >= x ---> a >= b + x ----> b ---> a = x(b连a,边权为x), ----> 找最长路, --->f[a][b]对应a - b的最小值,
a - b <=x ---->后面的都反过来就好了
关于这道题:
首先我们可以发现它实际上就是告诉了我们一堆这样的关系:
a > b,
a < b,
a = b,
所以我们应该要想到差分约束,
如果直接连,我们发现连边权都没有,,,,
因此我们要对式子进行转化,
以a > b为例:
a > b ----> a - b > 0 ---> a - b >= 1 ---> a >= b + 1,
这就变成了形如上面的式子,
但是我们发现我们得到了a - b 的最大值和最小值还不够,
于是我们对目标进行转化,
题目要求a + b ? x + y,其中a + b给定,
那么小于的情况实际上就是a - x < y - b || a - y < x - b,
如果是大于,那直接换符号即可,
如果是等于还要判断a - x的最大最小值相等,因为要确定的结果才能被计入答案,
#include<bits/stdc++.h>
using namespace std;
#define R register int
#define AC 52
/*考虑差分约束中路的长度的意义。
n很小,所以考虑floyd*/
int n,a,b,ans1,ans2,ans3;
int f_min[AC][AC], f_max[AC][AC];
char c[AC]; inline void upmin(int &a,int b)
{
if(b < a) a = b;
} inline void upmax(int &a,int b)
{
if(b > a) a = b;
} inline void pre()
{
scanf("%d%d%d",&n,&a,&b);
memset(f_min,,sizeof(f_min));
for(R i=;i<=n;i++)
{
scanf("%s",c+);
for(R j=;j<=n;j++)
{
if(c[j] == '=' || i == j)
f_min[i][j] = f_max[i][j] = ;
else if(c[j] == '+')
f_min[i][j] = , f_max[i][j] = ;//s[i] - s[j] <= 2, s[i] - s[j] >= 1(最大是3 - 1 = 2)
else if(c[j] == '-')
f_min[i][j] = -, f_max[i][j] = -;//s[i] - s[j] <= -1, s[i] - s[j] >= -2
else
f_min[i][j] = , f_max[i][j] = -;//s[i] - s[j] <= 2, i - j >= -2
}
} }
#define f_min f_min
#define f_max f_max
void floyd()
{
/*for(R k=1;k<=n;k++)
for(R i=1;i<=n;i++)
{
if(i == k) continue;//防止自己做中转
for(R j=1;j<=n;j++)
{
if(i == j) continue;//自己到自己是没有用的
upmin(f_min[i][j], f_min[i][k] + f_min[k][j]);
upmax(f_max[i][j], f_max[i][k] + f_max[k][j]);
}
}*/
for(int k=;k<=n;k++) //Floyd
for(int i=;i<=n;i++)
{
if(i==k) continue;
for(int j=;j<=n;j++)
{
if(i==j) continue;
f_min[i][j]=min(f_min[i][j],f_min[i][k]+f_min[k][j]);//上界求最短路
f_max[i][j]=max(f_max[i][k]+f_max[k][j],f_max[i][j]);//下界求最长路
}
}
} void work()
{//error!!!额。。。最长路对应最小值,最短路对应最大值
/*for(R i=1;i<=n;i++)
{
for(R j=1;j<=n;j++)
printf("%d ",f_min[i][j]);
printf("\n");
}
printf("\n");
for(R i=1;i<=n;i++)
{
for(R j=1;j<=n;j++)
printf("%d ",f_max[i][j]);
printf("\n");
}*/
for(R i = ; i <= n; i++)//强行枚举每一种可能
{
if(i == a || i == b) continue;//不能选已经选定了的
for(R j = ; j < i; j++)//<i防止重复统计
{
if(j == a || j == b) continue;//同上
if(f_min[a][i] < f_max[j][b] || f_min[a][j] < f_max[i][b]) ++ans3;
if(f_max[a][i] > f_min[j][b] || f_max[a][j] > f_min[i][b]) ++ans1;
if(f_max[a][i] == f_min[a][i] && f_max[j][b] == f_min[j][b] && f_max[a][i] == f_max[j][b]) ++ans2;
else if(f_min[a][j] == f_max[a][j] && f_min[i][b] == f_max[i][b] && f_min[a][j] == f_min[i][b]) ++ans2;
}
}
printf("%d %d %d\n",ans1,ans2,ans3);
} int main()
{
freopen("in.in","r",stdin);
pre();
floyd();
work();
fclose(stdin);
return ;
}
[SCOI2008]天平 差分约束的更多相关文章
- 洛谷2474 [SCOI2008] 天平 差分约束->枚举
题目描述 你有n个砝码,均为1克,2克或者3克.你并不清楚每个砝码的重量,但你知道其中一些砝码重量的大小关系.你把其中两个砝码A 和B 放在天平的左边,需要另外选出两个砝码放在天平的右边.问:有多少种 ...
- [luogu2474 SCOI2008]天平(floyd差分约束)
传送门 Solution 由于重量只有三种情况,那么想到用差分约束. 由于范围比较小,想到可以floyed求差分约束,暴力求天平另一边 Code #include <cstdio> #in ...
- 【洛谷】2474:[SCOI2008]天平【差分约束系统】
P2474 [SCOI2008]天平 题目背景 2008四川NOI省选 题目描述 你有n个砝码,均为1克,2克或者3克.你并不清楚每个砝码的重量,但你知道其中一些砝码重量的大小关系.你把其中两个砝码A ...
- 2021.07.23 P2474 天平(差分约束)
2021.07.23 P2474 天平(差分约束) [P2474 SCOI2008]天平 - 洛谷 | 计算机科学教育新生态 (luogu.com.cn) 题意: 已知A,B和每两个点点权,求点权i, ...
- 【BZOJ1077】天平(差分约束)
[BZOJ1077]天平(差分约束) 题面 BZOJ 洛谷 题解 利用矩阵可以很容易得到两个点之间的最大差和最小差,再利用这个信息判断即可.差分约束用\(Floyd\)计算.时间复杂度\(O(n^3) ...
- 洛谷P2474 [SCOI2008]天平
P2474 [SCOI2008]天平 题目背景 2008四川NOI省选 题目描述 你有n个砝码,均为1克,2克或者3克.你并不清楚每个砝码的重量,但你知道其中一些砝码重量的大小关系.你把其中两个砝码A ...
- [SCOI2008]天平
题目描述 你有n个砝码,均为1克,2克或者3克.你并不清楚每个砝码的重量,但你知道其中一些砝码重量的大小关系.你把其中两个砝码A 和B 放在天平的左边,需要另外选出两个砝码放在天平的右边.问:有多少种 ...
- Candies-POJ3159差分约束
Time Limit: 1500MS Memory Limit: 131072K Description During the kindergarten days, flymouse was the ...
- poj3159 差分约束 spfa
//Accepted 2692 KB 1282 ms //差分约束 -->最短路 //TLE到死,加了输入挂,手写queue #include <cstdio> #include & ...
随机推荐
- 安装wamp后,其显示目录的图标显示不出来
解决办法:wamp的安装目录中,到 wamp\bin\apache\Apache2.2.21\conf \extra下打开httpd-autoindex.conf文件,这里是索引文件图标的配置文件.修 ...
- Linux下查看CPU信息[/proc/cpuinfo]
最近在研究linux系统负载的时候,接触到一些关于CPU信息查看的知识,和大家分享一下.通过对/proc/cpuinfo文件中的参数的分析,也学到了不少东西. 在linux操作系统中,CPU的信息在启 ...
- Java图片转字符
很久都没有更新博客了,昨天下午一个朋友问我能不能将一张图片转换成字符画,然后我想我这个朋友不知道,也许有的朋友以不知道,我就简单的分享一下 package com.xsl.zhuanhuan; imp ...
- KubeCon深度洞察 | KubeEdge开源首秀
以下内容根据华为云DJ在KubeCon Shanghai Demo Session演讲实录整理而成. KubeEdge Demo Show 11月15日上午Huawei宣布了KubeEdge项目开源, ...
- mysql 开启远程连接
如图,修改mysql数据库中user表中的User字段为root的host为%,然后重新启动mysql服务即可让远程桌面连接本地.
- linux系统简单命令
# uname -a # 查看内核/操作系统/CPU信息 # head -n 1 /etc/issue # 查看操作系统版本 # cat /proc/cpuinfo # 查看CPU信息 # hostn ...
- leetcode-零钱兑换—int溢出
零钱兑换 给定不同面额的硬币 coins 和一个总金额 amount.编写一个函数来计算可以凑成总金额所需的最少的硬币个数.如果没有任何一种硬币组合能组成总金额,返回 -1. 示例 1: 输入: c ...
- linux服务器操作小技巧
python程序后台一直运行,并将打印信息输出到文件中 nohup -u test.py > out.txt & -u 表示无缓冲,直接将打印信息输出带文件中 &表示程序后台运行
- 隐马尔科夫模型(hidden Markov Model)
万事开头难啊,刚开头确实不知道该怎么写才能比较有水平,这篇博客可能会比较长,隐马尔科夫模型将会从以下几个方面进行叙述:1 隐马尔科夫模型的概率计算法 2 隐马尔科夫模型的学习算法 3 隐马尔科夫模型 ...
- LeetCode - 389. Find the Difference - 三种不同解法 - ( C++ ) - 解题报告
1.题目大意 Given two strings s and t which consist of only lowercase letters. String t is generated by r ...