Description

给定一张 \(n\) 个点 \(m\) 条边的无向图,一开始你在点 \(1\),且价值为 \(0\)

每次你可以选择一个相邻的点,然后走过去,并将价值异或上该边权

如果在点 \(n\),你可以选择结束游戏

求一种方案,使得结束游戏后价值最小

\(n,m \le 10^5\)

Input

第一行为两个整数\(n,m\)代表有\(n\)个点\(m\)条边。

接下来\(m\)行,描述一条从\(x\)到\(y\)长度为\(z\)的无向边。

Output

一个整数,代表最小价值。

首先,很明确的一点,题目要求我们求出很多条边的最小异或和。

由此,我们可以想到线性基

由于我们可以重复经过一些边,那么根据异或性质,当这条边被重复走过两次,那它对答案的贡献就是\(0\)。但是即使这样,它还可能连向其他的点。

虽然我们没办法枚举边,但是可以考虑将这些边所在分为两种。

  1. 环上的边
  2. 链上的边

但是我们通向一个环的时候会经过一条连向这个环的边两次。(一进一出)。

因此,我们考虑维护每个环的异或和,塞入线性基中

再找一条链,去和其异或起来最小。即可。

这条链可以随便选择

简单证明一下;

假设存在两条链\(A,B\),我们现在选择了不优的\(A\)链,但是在求解答案的时候(利用线性基)

我们会异或到一个环(\(A,B\)链围成的环),这时,就好比我们原路返回,又选择了较优的\(B\)链。

因此,这个题就解决了.

代码

#include<cstdio>
#include<algorithm>
#include<iostream>
#define R register
#define lo long long using namespace std; const int gz=1e5+8; inline void in(R int &x)
{
int f=1;x=0;char s=getchar();
while(!isdigit(s)){if(s=='-')f=-1;s=getchar();}
while(isdigit(s)){x=x*10+s-'0';s=getchar();}
x*=f;
} int head[gz<<1],tot; struct cod{int u,v;lo w;}edge[gz<<2]; lo p[64],dis[gz]; inline void add(R int x,R int y,R lo z)
{
edge[++tot].u=head[x];
edge[tot].v=y;
edge[tot].w=z;
head[x]=tot;
} int n,m; bool vis[gz]; inline void ins(R lo x)
{
for(R int i=63;i>=0;i--)
{
if((x>>i)&1LL)
{
if(p[i])
x^=p[i];
else
{
p[i]=x;
break;
}
}
}
} inline lo query(R lo o)
{
R lo res=o;
for(R int i=63;i>=0;i--)
if((res^p[i])<res)res^=p[i];
return res;
} void dfs(R int u,R lo now)
{
vis[u]=true;dis[u]=now;
for(R int i=head[u];i;i=edge[i].u)
{
if(!vis[edge[i].v])
dfs(edge[i].v,now^edge[i].w);
else ins(now^edge[i].w^dis[edge[i].v]);
}
} int main()
{
in(n);in(m);
for(R int i=1,x,y;i<=m;i++)
{
R lo z;
in(x),in(y);
scanf("%lld",&z);
add(x,y,z),add(y,x,z);
} dfs(1,0); printf("%lld\n",query(dis[n]));
}

线性基【CF845G】Shortest Path Problem?的更多相关文章

  1. [CF845G]Shortest Path Problem?

    题目大意:同这道题,只是把最大值变成了最小值 题解:略 卡点:无 C++ Code: #include <cstdio> #define maxn 100010 #define maxm ...

  2. Codefroces Educational Round 27 845G Shortest Path Problem?

    Shortest Path Problem? You are given an undirected graph with weighted edges. The length of some pat ...

  3. 干货 | 列生成VRPTW子问题ESPPRC( Elementary shortest path problem with resource constraints)介绍附C++代码

    00 前言 各位小伙伴大家好,相信大家已经看过前面column generation求解vehicle routing problems的过程详解.该问题中,子问题主要是找到一条reduced cos ...

  4. 【CF edu 27 G. Shortest Path Problem?】

    time limit per test 3 seconds memory limit per test 512 megabytes input standard input output standa ...

  5. Codeforces 845G Shortest Path Problem?

    http://codeforces.com/problemset/problem/845/G 从顶点1dfs全图,遇到环则增加一种备选方案,环上的环不需要走到前一个环上作为条件,因为走完第二个环可以从 ...

  6. AT [ABC177F] I hate Shortest Path Problem

    因为每行只有一个区域不能往下走,因此我们可以来分析一下从起点到整个矩形每个位置的最短路.可以发现每一行的最短路只与上一行的最短路有关,假设我们知道上一行的最短路,上一行不能往下走的区间在 \([L, ...

  7. Solve Longest Path Problem in linear time

    We know that the longest path problem for general case belongs to the NP-hard category, so there is ...

  8. Why longest path problem doesn't have optimal substructure?

    We all know that the shortest path problem has optimal substructure. The reasoning is like below: Su ...

  9. 【CF938G】Shortest Path Queries(线段树分治,并查集,线性基)

    [CF938G]Shortest Path Queries(线段树分治,并查集,线性基) 题面 CF 洛谷 题解 吼题啊. 对于每个边,我们用一个\(map\)维护它出现的时间, 发现询问单点,边的出 ...

随机推荐

  1. 数据结构&字符串:01字典树

    利用01字典树查询最大异或值 01字典树的是只含有0和1两种字符的字典树,在使用它的时候,把若干数字转成二进制后插入其中 在查询树中的哪个数字和给定数字有最大异或值的时候,从根开始贪心查询就ok了 H ...

  2. hihocoder1445 后缀自动机二·重复旋律5

    传送门:http://hihocoder.com/problemset/problem/1445 [题解] 大概看了一天的后缀自动机,总算懂了一些 这篇文章写的非常好,诚意安利:Suffix Auto ...

  3. 【游记】CTSC&APIO2017

    GDOI回来不到两天就前往北京参加CTSC和APIO. CTSC Day1 [考试] T1一道神奇的题,很快想到O(n2)做法,感觉ctsc题目难度应该很大,就没马上想着出正解(事实上这届CTSC偏水 ...

  4. 密码本(无bug版)

    main.cpp #include <stdio.h> #include <stdlib.h> #include "data.h" #include &qu ...

  5. 9、MySQL常见的函数?

    请参考下面的博客文章: MySQL常见的函数

  6. chrome表单自动填充导致input文本框背景变成偏黄色问题

    你曾遇到过吗? 困扰宝宝好久的问题,本以为是什么插件导致的,结果是chrome浏览器自动填充文本时默认的样式,搜嘎. 一.修改自动填充input文本框背景色: 使用以下代码 可以设置自己的想要的默认文 ...

  7. POJ1014(多重背包)

    Dividing Time Limit: 1000MS   Memory Limit: 10000K Total Submissions: 65044   Accepted: 16884 Descri ...

  8. Linux进程调度与源码分析(二)——进程生命周期与task_struct进程结构体

    1.进程生命周期 Linux操作系统属于多任务操作系统,系统中的每个进程能够分时复用CPU时间片,通过有效的进程调度策略实现多任务并行执行.而进程在被CPU调度运行,等待CPU资源分配以及等待外部事件 ...

  9. handle_level_irq 与handle_edge_irq 的区别【转】

    转自:http://blog.csdn.net/xavierxiao/article/details/6087277 版权声明:本文为博主原创文章,未经博主允许不得转载. Linux 里, handl ...

  10. 【设计模式】迭代器模式(Iterator )

    摘要: 1.本文将详细介绍迭代器模式的原理和实际代码中特别是Android系统代码中的应用. 纲要: 1. 引入迭代器模式 2. 迭代器的概念及优缺点介绍 3. 迭代器在Android源码中的应用 1 ...