Description

给定一张 \(n\) 个点 \(m\) 条边的无向图,一开始你在点 \(1\),且价值为 \(0\)

每次你可以选择一个相邻的点,然后走过去,并将价值异或上该边权

如果在点 \(n\),你可以选择结束游戏

求一种方案,使得结束游戏后价值最小

\(n,m \le 10^5\)

Input

第一行为两个整数\(n,m\)代表有\(n\)个点\(m\)条边。

接下来\(m\)行,描述一条从\(x\)到\(y\)长度为\(z\)的无向边。

Output

一个整数,代表最小价值。

首先,很明确的一点,题目要求我们求出很多条边的最小异或和。

由此,我们可以想到线性基

由于我们可以重复经过一些边,那么根据异或性质,当这条边被重复走过两次,那它对答案的贡献就是\(0\)。但是即使这样,它还可能连向其他的点。

虽然我们没办法枚举边,但是可以考虑将这些边所在分为两种。

  1. 环上的边
  2. 链上的边

但是我们通向一个环的时候会经过一条连向这个环的边两次。(一进一出)。

因此,我们考虑维护每个环的异或和,塞入线性基中

再找一条链,去和其异或起来最小。即可。

这条链可以随便选择

简单证明一下;

假设存在两条链\(A,B\),我们现在选择了不优的\(A\)链,但是在求解答案的时候(利用线性基)

我们会异或到一个环(\(A,B\)链围成的环),这时,就好比我们原路返回,又选择了较优的\(B\)链。

因此,这个题就解决了.

代码

#include<cstdio>
#include<algorithm>
#include<iostream>
#define R register
#define lo long long using namespace std; const int gz=1e5+8; inline void in(R int &x)
{
int f=1;x=0;char s=getchar();
while(!isdigit(s)){if(s=='-')f=-1;s=getchar();}
while(isdigit(s)){x=x*10+s-'0';s=getchar();}
x*=f;
} int head[gz<<1],tot; struct cod{int u,v;lo w;}edge[gz<<2]; lo p[64],dis[gz]; inline void add(R int x,R int y,R lo z)
{
edge[++tot].u=head[x];
edge[tot].v=y;
edge[tot].w=z;
head[x]=tot;
} int n,m; bool vis[gz]; inline void ins(R lo x)
{
for(R int i=63;i>=0;i--)
{
if((x>>i)&1LL)
{
if(p[i])
x^=p[i];
else
{
p[i]=x;
break;
}
}
}
} inline lo query(R lo o)
{
R lo res=o;
for(R int i=63;i>=0;i--)
if((res^p[i])<res)res^=p[i];
return res;
} void dfs(R int u,R lo now)
{
vis[u]=true;dis[u]=now;
for(R int i=head[u];i;i=edge[i].u)
{
if(!vis[edge[i].v])
dfs(edge[i].v,now^edge[i].w);
else ins(now^edge[i].w^dis[edge[i].v]);
}
} int main()
{
in(n);in(m);
for(R int i=1,x,y;i<=m;i++)
{
R lo z;
in(x),in(y);
scanf("%lld",&z);
add(x,y,z),add(y,x,z);
} dfs(1,0); printf("%lld\n",query(dis[n]));
}

线性基【CF845G】Shortest Path Problem?的更多相关文章

  1. [CF845G]Shortest Path Problem?

    题目大意:同这道题,只是把最大值变成了最小值 题解:略 卡点:无 C++ Code: #include <cstdio> #define maxn 100010 #define maxm ...

  2. Codefroces Educational Round 27 845G Shortest Path Problem?

    Shortest Path Problem? You are given an undirected graph with weighted edges. The length of some pat ...

  3. 干货 | 列生成VRPTW子问题ESPPRC( Elementary shortest path problem with resource constraints)介绍附C++代码

    00 前言 各位小伙伴大家好,相信大家已经看过前面column generation求解vehicle routing problems的过程详解.该问题中,子问题主要是找到一条reduced cos ...

  4. 【CF edu 27 G. Shortest Path Problem?】

    time limit per test 3 seconds memory limit per test 512 megabytes input standard input output standa ...

  5. Codeforces 845G Shortest Path Problem?

    http://codeforces.com/problemset/problem/845/G 从顶点1dfs全图,遇到环则增加一种备选方案,环上的环不需要走到前一个环上作为条件,因为走完第二个环可以从 ...

  6. AT [ABC177F] I hate Shortest Path Problem

    因为每行只有一个区域不能往下走,因此我们可以来分析一下从起点到整个矩形每个位置的最短路.可以发现每一行的最短路只与上一行的最短路有关,假设我们知道上一行的最短路,上一行不能往下走的区间在 \([L, ...

  7. Solve Longest Path Problem in linear time

    We know that the longest path problem for general case belongs to the NP-hard category, so there is ...

  8. Why longest path problem doesn't have optimal substructure?

    We all know that the shortest path problem has optimal substructure. The reasoning is like below: Su ...

  9. 【CF938G】Shortest Path Queries(线段树分治,并查集,线性基)

    [CF938G]Shortest Path Queries(线段树分治,并查集,线性基) 题面 CF 洛谷 题解 吼题啊. 对于每个边,我们用一个\(map\)维护它出现的时间, 发现询问单点,边的出 ...

随机推荐

  1. 51Nod 1381 硬币游戏 | 概率(数学期望)

    Input 第一行给出一个整数T,表示有T组数据(1<=T<=10000). 第2行到T+1,每行给出一个整数R.(0< R <= 10,000,000,000) Output ...

  2. [洛谷P2596] [ZJOI2006]书架

    洛谷题目链接:书架 题目描述 小T有一个很大的书柜.这个书柜的构造有些独特,即书柜里的书是从上至下堆放成一列.她用1到n的正整数给每本书都编了号. 小T在看书的时候,每次取出一本书,看完后放回书柜然后 ...

  3. 删除linux上7天前后缀名.sql的文件

    #!/bin/bash#delete the file of 7 days agofind /data/mysqlbackup/ -mtime +7 -name "*.sql" - ...

  4. DotNet 学习笔记 OWIN

    Open Web Interface for .NET (OWIN) ----------------------------------------------------------------- ...

  5. Spring Cloud Eureka服务注册源码分析

    Eureka是怎么work的 那eureka client如何将本地服务的注册信息发送到远端的注册服务器eureka server上.通过下面的源码分析,看出Eureka Client的定时任务调用E ...

  6. linux启动过程——(三)

  7. v4l2驱动编写篇【转】

    转自:http://blog.csdn.net/michaelcao1980/article/details/53008418 大部分所需的信息都在这里.作为一个驱动作者,当挖掘头文件的时候,你可能也 ...

  8. VPS性能测试方法小结(8)

    1.为了能够得到更为准确和详细的有关VPS主机性能测试数据,我们应该多角度.全方位地运行多种VPS性能测试工具来进行检测,同时也要记得排除因本地网络环境而造成的数据结果的错误. 2.VPS主机性能跑分 ...

  9. axios使用

    axios 基于promise用于浏览器和node.js的http客户端 特点 支持浏览器和node.js 支持promise 能拦截请求和响应 能转换请求和响应数据 能取消请求 自动转换JSON数据 ...

  10. python--tesseract

    tesseract的介绍 我们爬虫会受到阻碍,其中一个便是我们在模拟登陆或者请求一些数据的时候,出现的图形验证码,因此我们需要一种能叫图形验证码识别成文本的技术.将图片翻译成文字一般称为光学文字识别( ...