CF633F The Chocolate Spree
Description
Alice and Bob have a tree (undirected acyclic connected graph). There are \(a_{i}\) chocolates waiting to be picked up in the \(i-th\) vertex of the tree. First, they choose two different vertices as their starting positions (Alice chooses first) and take all the chocolates contained in them.
Then, they alternate their moves, selecting one vertex at a time and collecting all chocolates from this node. To make things more interesting, they decided that one can select a vertex only if he/she selected a vertex adjacent to that one at his/her previous turn and this vertex has not been already chosen by any of them during other move.
If at any moment one of them is not able to select the node that satisfy all the rules, he/she will skip his turns and let the other person pick chocolates as long as he/she can. This goes on until both of them cannot pick chocolates any further.
Due to their greed for chocolates, they want to collect as many chocolates as possible. However, as they are friends they only care about the total number of chocolates they obtain together. What is the maximum total number of chocolates they may pick?
Solution
其实这个题有比较套路的做法, 参考OO0OO0...或者tourist的提交
但是有一个童鞋提供了一个比较正常的做法godspeedkaka's blog.
Code
// my id of codeforces is XXXXXXXXX
#include <vector>
#include <stdio.h>
#include <string.h>
#include <iostream>
#include <algorithm>
const int N = 100005;
std:: vector<int> e[N];
int val[N];
long long Res[N], AChain[N], ACFNAAC[N], LCFNTL[N];
int GetAnswer(int u, int fa) {
Res[u] = AChain[u] = ACFNAAC[u] = LCFNTL[u] = val[u];
long long LongestChain = 0;
for (auto v : e[u]) {
if (v == fa) continue;
GetAnswer(v, u);
Res[u] = std:: max(Res[u], Res[v]);
Res[u] = std:: max(Res[u], AChain[u] + AChain[v]);
Res[u] = std:: max(Res[u], ACFNAAC[u] + LCFNTL[v]);
Res[u] = std:: max(Res[u], ACFNAAC[v] + LCFNTL[u]);
AChain[u] = std:: max(AChain[u], AChain[v]);
AChain[u] = std:: max(AChain[u], LCFNTL[u] + LCFNTL[v]);
ACFNAAC[u] = std:: max(ACFNAAC[u], val[u] + ACFNAAC[v]);
ACFNAAC[u] = std:: max(ACFNAAC[u], LCFNTL[u] + AChain[v]);
ACFNAAC[u] = std:: max(ACFNAAC[u], LCFNTL[v] + val[u] + LongestChain);
LongestChain = std:: max(LongestChain, AChain[v]);
LCFNTL[u] = std:: max(LCFNTL[u], LCFNTL[v] + val[u]);
}
}
int main () {
int n;
scanf("%d", &n);
for (int i = 1; i <= n; i += 1)
scanf("%d", &val[i]);
for (int i = 1; i < n; i += 1) {
int u, v;
scanf("%d%d", &u, &v);
e[u].push_back(v), e[v].push_back(u);
}
GetAnswer(1, 0);
printf("%I64d", Res[1]);
return 0;
}
CF633F The Chocolate Spree的更多相关文章
- cf633F. The Chocolate Spree(树形dp)
题意 题目链接 \(n\)个节点的树,点有点权,找出互不相交的两条链,使得权值和最大 Sol 这辈子也不会写树形dp的 也就是有几种情况,可以讨论一下.. 下文的"最大值"指的是& ...
- Codeforces 633F The Chocolate Spree 树形dp
The Chocolate Spree 对拍拍了半天才知道哪里写错了.. dp[ i ][ j ][ k ]表示在 i 这棵子树中有 j 条链, 是否有链延伸上来. #include<bits/ ...
- CF 633 F. The Chocolate Spree 树形dp
题目链接 CF 633 F. The Chocolate Spree 题解 维护子数答案 子数直径 子数最远点 单子数最长直径 (最长的 最远点+一条链) 讨论转移 代码 #include<ve ...
- codeforces 633F The Chocolate Spree (树形dp)
题目链接:http://codeforces.com/problemset/problem/633/F 题解:看起来很像是树形dp其实就是单纯的树上递归,就是挺难想到的. 显然要求最优解肯定是取最大的 ...
- Codeforces 633F - The Chocolate Spree(树形 dp)
Codeforces 题目传送门 & 洛谷题目传送门 看来我这个蒟蒻现在也只配刷刷 *2600 左右的题了/dk 这里提供一个奇奇怪怪的大常数做法. 首先还是考虑分析"两条不相交路径 ...
- Solution -「树上杂题?」专练
主要是记录思路,不要被刚开始错误方向带偏了 www 「CF1110F」Nearest Leaf 特殊性质:先序遍历即为 \(1 \to n\),可得出:叶子节点编号递增或可在不改变树形态的基础上调整为 ...
- Manthan, Codefest 16
暴力 A - Ebony and Ivory import java.util.*; import java.io.*; public class Main { public static void ...
- Big Chocolate
Big Chocolate 题目链接:http://acm.hust.edu.cn/vjudge/problem/visitOriginUrl.action?id=19127 Big Chocolat ...
- Dividing a Chocolate(zoj 2705)
Dividing a Chocolate zoj 2705 递推,找规律的题目: 具体思路见:http://blog.csdn.net/u010770930/article/details/97693 ...
随机推荐
- ocker nginx 配置反向代理和负载均衡
1. 获取及配置nginx 如果需要全站通过docker部署,那么nginx或许是不可或缺的.通过配置nginx,可以迅速实现负载均衡和反向代理服务.值得一提的是,docker官网恰好也有nginx镜 ...
- BZOJ1061:[NOI2008]志愿者招募——题解
https://www.lydsy.com/JudgeOnline/problem.php?id=1061 https://www.luogu.org/problemnew/show/P3980 申奥 ...
- LAMP架构的搭建 和wordpress
[root@yu ~]# yum install httpd php php-mysql mysql-server mysql -y 安装php [root@yu ~]# service http ...
- Linux 第30天: (08月5日) 练习和作业
变量脚本 1.编写脚本/root/bin/systeminfo.sh,显示当前主机系统信息,包括主机名,IPv4地址,操作系统版本,内核版本,CPU型号,内存大小,硬盘大小 server_ip=`if ...
- finetune on caffe
官方例程:http://caffe.berkeleyvision.org/gathered/examples/finetune_flickr_style.html 相应的中文说明:http://blo ...
- C++之tinyXML的使用详解
tinyXML一款很优秀的操作C++类库,文件不大,但方法很丰富,和apache的Dom4j可以披靡啊!习惯了使用java类库的我看到这么丰富的c++类库,很高兴!它使用很简单,只需要拷贝几个文件到你 ...
- YARN和MapReduce的内存设置参考
如何确定Yarn中容器Container,Mapreduce相关参数的内存设置,对于初始集群,由于不知道集群的类型(如cpu密集.内存密集)我们需要根据经验提供给我们一个参考配置值,来作为基础的配置. ...
- kafka 命令笔记
以下命令都是在kafka根目录下 启动自带的zookeeper bin/zookeeper-server-start.sh config/zookeeper.properties 启动kafka(启动 ...
- synchronize 和volatile 实现共享变量在多线程中的可见性
1.什么是线程可见性 可见性:一个线程对共享变量值的修改能够及时被其他线程看到. 共享变量:如果一个变量在多个线程工作内存中都存在副本,那么着给按量就是这几个线程的共享变量. 2.导致共享变量在线程间 ...
- 动态规划小结 - 二维动态规划 - 时间复杂度 O(n*n)的棋盘型,题 [LeetCode] Minimum Path Sum,Unique Paths II,Edit Distance
引言 二维动态规划中最常见的是棋盘型二维动态规划. 即 func(i, j) 往往只和 func(i-1, j-1), func(i-1, j) 以及 func(i, j-1) 有关 这种情况下,时间 ...