一、简介 

  VGGNet是计算机视觉组(Visual Geometry Group)和Google DeepMind公司的研究员一起研究的深度卷积神经网络。VGGNet探索了卷积神经网络深度与性能之间的关系,通过反复堆叠3*3的小型卷积核和2*2的最大池化层,VGGNet成功地构筑了16~19层(这里指的是卷积层和全连接层)深度卷积神经网络。到目前为止,VGGNet主要用来进行提取图像特征。

二、特点

  以常用的VGG16为例,VGGNet的特点是

  •   整个网络有5段卷积,每一段内有2~3个卷积层,且每一层的卷积核的数量一样。各段中每一层的卷积核数量依次为:64,128,256,512,512。记住有两层512
  •   都使用了同样大小的卷积核尺寸(3*3)和最大池化尺寸(2*2),卷积过程使用"SAME"模式,所以不改变feature map的分辨率。网络通过2*2的池化核以及stride=2的步长,每一次可以分辨率降低到原来的1/4,即长宽变为原来的1/2。
  •   网络的参数量主要消耗在全连接层上,不过训练比较耗时的依然是卷积层。

三、结构

  以下是VGGNet各级别的网络结构,总体上分为五段,各段中每一层的卷积核数量依次为:64,128,256,512,512,不一样的就是每一段中卷积层的数量。还有特别地地方就是A-LRN和C的第3,4,5层,不解释自己看图。

以下是VGGNet各级别网络参数量

以下有一个特点就是:两个3´3的卷积层串联相当于1个5´5的卷积层,即一个像素会跟周围5´5的像素产生关联,可以说感受野大小为5´5。而3个3´3的卷积层串联的效果则相当于1个7´7的卷积层。除此之外,3个串联的3´3的卷积层,拥有比1个7´7的卷积层更少的参数量,只有后者的。最重要的是,3个3´3的卷积层拥有比1个7´7的卷积层更多的非线性变换(前者可以使用三次ReLU激活函数,而后者只有一次),使得CNN对特征的学习能力更强。如下图

VGGNet在训练时有一个小技巧:先训练级别A的简单网络,再复用A网络的权重来初始化后面的几个复杂模型,这样训练收敛的速度更快。在预测时,VGG采用Multi-Scale的方法,将图像scale到一个尺寸Q,并将图片输入卷积网络计算。然后在最后一个卷积层使用滑窗的方式进行分类预测,将不同窗口的分类结果平均,再将不同尺寸Q的结果平均得到最后结果,这样可提高图片数据的利用率并提升预测准确率。同时在训练中,VGGNet还使用了Multi-Scale的方法做数据增强,将原始图像缩放到不同尺寸S,然后再随机裁切224´224的图片,这样能增加很多数据量,对于防止模型过拟合有很不错的效果。实践中,作者令S在[256,512]这个区间内取值,使用Multi-Scale获得多个版本的数据,并将多个版本的数据合在一起进行训练。图9所示为VGGNet使用Multi-Scale训练时得到的结果,可以看到D和E都可以达到7.5%的错误率。最终提交到ILSVRC 2014的版本是仅使用Single-Scale的6个不同等级的网络与Multi-Scale的D网络的融合,达到了7.3%的错误率。不过比赛结束后作者发现只融合Multi-Scale的D和E可以达到更好的效果,错误率达到7.0%,再使用其他优化策略最终错误率可达到6.8%左右,非常接近同年的冠军Google Inceptin Net。同时,作者在对比各级网络时总结出了以下几个观点。

(1)LRN层作用不大。

(2)越深的网络效果越好。

(3)1´1的卷积也是很有效的,但是没有3´3的卷积好,大一些的卷积核可以学习更大的空间特征。

四、参考

  《Tensorlow实战》

经典卷积网络模型 — VGGNet模型笔记的更多相关文章

  1. 经典卷积网络模型 — LeNet模型笔记

    LeNet-5包含于输入层在内的8层深度卷积神经网络.其中卷积层可以使得原信号特征增强,并且降低噪音.而池化层利用图像相关性原理,对图像进行子采样,可以减少参数个数,减少模型的过拟合程度,同时也可以保 ...

  2. TensorFlow实战之实现AlexNet经典卷积神经网络

    本文根据最近学习TensorFlow书籍网络文章的情况,特将一些学习心得做了总结,详情如下.如有不当之处,请各位大拿多多指点,在此谢过. 一.AlexNet模型及其基本原理阐述 1.关于AlexNet ...

  3. 五大经典卷积神经网络介绍:LeNet / AlexNet / GoogLeNet / VGGNet/ ResNet

    欢迎大家关注我们的网站和系列教程:http://www.tensorflownews.com/,学习更多的机器学习.深度学习的知识! LeNet / AlexNet / GoogLeNet / VGG ...

  4. 经典卷积神经网络(LeNet、AlexNet、VGG、GoogleNet、ResNet)的实现(MXNet版本)

    卷积神经网络(Convolutional Neural Network, CNN)是一种前馈神经网络,它的人工神经元可以响应一部分覆盖范围内的周围单元,对于大型图像处理有出色表现. 其中 文章 详解卷 ...

  5. 卷积神经网络(CNN)学习笔记1:基础入门

    卷积神经网络(CNN)学习笔记1:基础入门 Posted on 2016-03-01   |   In Machine Learning  |   9 Comments  |   14935  Vie ...

  6. 经典卷积神经网络算法(2):AlexNet

    .caret, .dropup > .btn > .caret { border-top-color: #000 !important; } .label { border: 1px so ...

  7. DL4J实战之三:经典卷积实例(LeNet-5)

    欢迎访问我的GitHub https://github.com/zq2599/blog_demos 内容:所有原创文章分类汇总及配套源码,涉及Java.Docker.Kubernetes.DevOPS ...

  8. DL4J实战之四:经典卷积实例(GPU版本)

    欢迎访问我的GitHub https://github.com/zq2599/blog_demos 内容:所有原创文章分类汇总及配套源码,涉及Java.Docker.Kubernetes.DevOPS ...

  9. 卷积神经网络(CNN)模型结构

    在前面我们讲述了DNN的模型与前向反向传播算法.而在DNN大类中,卷积神经网络(Convolutional Neural Networks,以下简称CNN)是最为成功的DNN特例之一.CNN广泛的应用 ...

随机推荐

  1. Openstack keystone组件详解

    OpenStack Keystone Keystone(OpenStack Identity Service)是 OpenStack 框架中负责管理身份验证.服务规则和服务令牌功能的模块.用户访问资源 ...

  2. [洛谷P2161][SHOI2009]会场预约

    题目大意:有两种操作: $A\;l\;r:$表示加入区间$[l,r]$,并把与之冲突的区间删除,输出删除的区间的个数,区间$A$于区间$B$冲突当且仅当$A\cap B\not=\varnothing ...

  3. POJ3041:Asteroids——题解

    http://poj.org/problem?id=3041 题目大意:激光可以干掉一整行或一整列陨石,求最少激光次数. —————————————————— 二分图匹配,对于每一个陨石将它的横纵坐标 ...

  4. CF527A:Playing with Paper——题解

    https://vjudge.net/problem/CodeForces-527A http://codeforces.com/problemset/problem/527/A 题目大意:一个纸长a ...

  5. Extjs 动态修改gridPanel列头信息以及store数据的方法

    1 /*******************************checkbox按钮 历史报警信息**************************************/ var check ...

  6. HDU4612:Warm up(缩点+树的直径)

    Warm up Time Limit: 10000/5000 MS (Java/Others)    Memory Limit: 65535/65535 K (Java/Others)Total Su ...

  7. try catch finally 和return

    结论:1.不管有木有出现异常,finally块中代码都会执行:2.当try和catch中有return时,finally仍然会执行:3.finally是在return后面的表达式运算后执行的(此时并没 ...

  8. 解决oracle数据库 ora-00054:resource busy and acquire with NOWAIT specified 错误

    解决oracle数据库 ora-00054:resource busy and acquire with NOWAIT specified 错误 本人在使用pl/sql developer 客户端调用 ...

  9. liunx系统下安装mysql数据库5.7.13版本

    一:在/usr/local目录下解压安装包

  10. (第三章,第四章)http报文内的http信息,返回结果的http状态码

    第三章 http报文内的http信息 用于http协议交互的信息被称为http报文,包括请求报文和响应报文. 1.编码提升传输速率,在传输时编码能有效的处理大量的访问请求.但是编码的操作是计算机完成的 ...