逃了一场SRM(躺

  A题可以看成0点到1点,有p的几率从0到1,1-p几率不动,求0到1的期望步数。很显然概率是不降序列数/n!,然后列个方程E[0] = E[0] * (1 - p) + 1,解得E[0]=1/p,然后输出就行了。。。

  B题是SRM03的原题,有dalao干了一些政治不正确的事被婊了啊惨

  C题直接处理出一个矩阵(i,j)表示a[i]是否>=a[j],然后每次询问 l,r 就相当于询问 (l,l)到(r,r)的sum嘛,预处理二维前缀和就行了,看好多dalao写了扫描线+bit。

  D直接拆数

  E直接扫就行了根本不用什么分块,我退群吧.jpg

  只能口胡一波题解了,C题好像是标程挂了

ContestHunter暑假欢乐赛 SRM 04的更多相关文章

  1. ContestHunter暑假欢乐赛 SRM 15

    菜菜给题解,良心出题人!但我还是照常写SRM一句话题解吧... T1经典题正解好像是贪心...我比较蠢写了个DP,不过还跑的挺快的 f[i]=min( f[j-a[j]-1] )+1  { j+a[j ...

  2. ContestHunter暑假欢乐赛 SRM 02

    惨不忍睹 3个小时都干了些什么... 日常按顺序从A题开始(难度居然又不是递增的 第一眼A题就觉得很简单...写到一半才发现woc那是个环.感觉一下子复杂了,按照链的方法扩展的话要特判很多东西... ...

  3. ContestHunter暑假欢乐赛 SRM 01 - 儿童节常数赛 爆陵记

    最后15min过了两题...MDZZ 果然是不适合OI赛制啊...半场写完三题还自信满满的,还好有CZL报哪题错了嘿嘿嘿(这算不算犯规了(逃 悲惨的故事*1....如果没有CZL的话T1 10分 悲惨 ...

  4. ContestHunter暑假欢乐赛 SRM 09(TJM大傻逼选手再创佳绩)

    T1 f[i]为前i页最少被撕几页,用二分转移就行了,答案为ans=min(f[i]+(n-i)); 不知道为什么写挂了嗯 二分的l初始应该是0 T2 数位DP f[i][1/0][1/0][1/0] ...

  5. ContestHunter暑假欢乐赛 SRM 08

    rating再次跳水www A题贴HR题解!HR智商流选手太强啦!CYC也好强%%%发现了len>10大概率是Y B题 dp+bit优化,据LLQ大爷说splay也可以优化,都好强啊.. C题跑 ...

  6. ContestHunter暑假欢乐赛 SRM 06

    T1二分check...为什么这么显然的我没看出来TAT,还在想倒着加入并查集check什么的,题写太多思维定势啦QAQ T2是NOIP题的弱化版...当时没看出来,写了个DP.可以看出这一位比上一位 ...

  7. ContestHunter暑假欢乐赛 SRM 05

    T1 组合数,求一下乘法逆元就行了 没取模 没1LL* 爆零了 T2 让最大子段和最小就行,跑最大子段和的时候若超过S就弹出堆中最大的数,每次有负数加进来不断弹出最小的数相加重新加进堆直到为正数,因为 ...

  8. ContestHunter暑假欢乐赛 SRM 03

    你们也没人提醒我有atcoderQAQ... A题曼哈顿距离=欧拉距离就是在同一行或者同一列,记录下i,j出现过的次数,减去就行,直接map过. B题一开始拿衣服了,一直以为排序和不排序答案是一个样的 ...

  9. CH暑假欢乐赛 SRM 07 天才麻将少女KPM(DP+treap)

    首先LIS有个$O(n^2)$的DP方法 $f(i,j)$表示前i个数,最后一个数<=j的LIS 如果$a_i!=0$则有 如果$a_i=0$则有 注意因为$f(i-1,j)\leq f(i-1 ...

随机推荐

  1. Linux命令应用大词典-第18章 磁盘分区

    18.1 fdisk:分区表管理 18.2 parted:分区维护程序 18.3 cfdisk:基于磁盘进行分区操作 18.4 partx:告诉内核关于磁盘上分区的号码 18.5 sfdisk:用于L ...

  2. [JSON].typeOf( keyPath )

    语法:[JSON].typeOf( keyPath ) 返回:[String | Number | Boolean | Json | Array |  Function | 空字符] 说明:获取指定键 ...

  3. lintcode 二叉树后序遍历

    /** * Definition of TreeNode: * class TreeNode { * public: * int val; * TreeNode *left, *right; * Tr ...

  4. JAVA基础学习之路(三)类定义及构造方法

    类的定义及使用 一,类的定义 class Book {//定义一个类 int price;//定义一个属性 int num; public static int getMonney(int price ...

  5. Android开发-API指南-<permission>

    <permission> 英文原文:http://developer.android.com/guide/topics/manifest/permission-element.html 采 ...

  6. Skype for Business Server 方案

    方案说明: 高可用性的配置屏蔽了单点故障,使得当一个服务器节点失效时,另外的可用的节点能够进行服务的接管.可伸缩性的配置可以保证当即时沟通平台的使用用户增加时,该平台应该具有良好的可伸缩性,能非常方便 ...

  7. visionpro吧-百度贴吧

    Halcon,Visionpro视频教程,观看下载地址:http://www.211code.com

  8. NFS服务搭建使用

    需求:由于线上业务有一些数据存在了Redis数据库和mysql数据库中了,导致了数据较大迁移起来比较麻烦,所以准备搭建NFS来做WEB的共享磁盘,存储这些数据. 服务端搭建: 查看本机关于nfs的包 ...

  9. 又见CLOSE_WAIT

    原文: http://mp.weixin.qq.com/s?__biz=MzI4MjA4ODU0Ng==&mid=402163560&idx=1&sn=5269044286ce ...

  10. DFS中的奇偶剪枝(技巧)

    剪枝是什么,简单的说就是把不可行的一些情况剪掉,例如走迷宫时运用回溯法,遇到死胡同时回溯,造成程序运行时间长.剪枝的概念,其实就跟走迷宫避开死胡同差不多.若我们把搜索的过程看成是对一棵树的遍历,那么剪 ...