洛谷P4135 作诗

题目描述

神犇SJY虐完HEOI之后给傻×LYD出了一题:

SHY是T国的公主,平时的一大爱好是作诗。

由于时间紧迫,SHY作完诗之后还要虐OI,于是SHY找来一篇长度为N的文章,阅读M次,每次只阅读其中连续的一段[l,r],从这一段中选出一些汉字构成诗。因为SHY喜欢对偶,所以SHY规定最后选出的每个汉字都必须在[l,r]里出现了正偶数次。而且SHY认为选出的汉字的种类数(两个一样的汉字称为同一种)越多越好(为了拿到更多的素材!)。于是SHY请LYD安排选法。

LYD这种傻×当然不会了,于是向你请教……

问题简述:N个数,M组询问,每次问[l,r]中有多少个数出现正偶数次。

输入输出格式

输入格式:

输入第一行三个整数n、c以及m。表示文章字数、汉字的种类数、要选择M次。

第二行有n个整数,每个数Ai在[1, c]间,代表一个编码为Ai的汉字。

接下来m行每行两个整数l和r,设上一个询问的答案为ans(第一个询问时ans=0),令L=(l+ans)mod n+1, R=(r+ans)mod n+1,若L>R,交换L和R,则本次询问为[L,R]。

输出格式:

输出共m行,每行一个整数,第i个数表示SHY第i次能选出的汉字的最多种类数。

输入输出样例

输入样例#1:

5 3 5

1 2 2 3 1

0 4

1 2

2 2

2 3

3 5

输出样例#1:

2

0

0

0

1

说明

对于100%的数据,1<=n,c,m<=10^5

Solution

貌似没有暴力分...

而且还卡时...十分恶心..必须要开\(O(2)...\)

无fuck说...

还是分块

其实这道题难得就是预处理,基本上会预处理就应该会查询了

那么怎么做到\(O(n\sqrt n)\)呢?

我们需要两个桶,一个sum[i][j]表示从块i到块j满足条件的个数,num[i][j]表示块1~块i内j的个数,然后做个前缀和

对于[l,r],如果区间长度小于\(\sqrt n\),我们暴力求解

否则暴力处理两边不完整的块,中间的\(O(1)\)查询(因为我们做了前缀和)

预处理num[][]数组

for(rg int i=1;i<=n;i++) {
in(v[i]),pos[i]=(i-1)/blo+1;
num[pos[i]][v[i]]++;
} for(rg int i=1;i<=c;i++)
for(int j=1;j<=pos[n];j++)
num[j][i]+=num[j-1][i];

预处理sum[][]数组

for(rg int i=1,cnt=0;i<=pos[n];i++,cnt=0) {
for(rg int j=(i-1)*blo+1;j<=n;j++) {
++AQ[v[j]];
if(AQ[v[j]]%2==0) ++cnt;
else if(AQ[v[j]]>2) --cnt;
sum[i][pos[j]]=cnt;
}
for(rg int j=(i-1)*blo+1;j<=n;j++) --AQ[v[j]];
}

Code

#include<bits/stdc++.h>
#define rg register
#define lol long long
#define Min(a,b) (a)<(b)?(a):(b)
#define Max(a,b) (a)>(b)?(a):(b)
#define in(i) (i=read())
using namespace std;
const int N=1e5+10;
int read() {
int ans=0,f=1; char i=getchar();
while(i<'0' || i>'9') {if(i=='-') f=-1; i=getchar();}
while(i>='0' && i<='9') ans=(ans<<1)+(ans<<3)+i-'0',i=getchar();
return ans*f;
}
int n,c,m,blo;
int sum[330][330],num[330][N],v[N],pos[N],AQ[N];
int query(int a,int b,int ans=0) {
rg int l=pos[a],r=pos[b];
if(l==r) {
for(rg int j=a;j<=b;j++) {
++AQ[v[j]];
if(AQ[v[j]]%2==0) ans++;
else if(AQ[v[j]]>2) ans--;
}
for(rg int j=a;j<=b;j++) --AQ[v[j]];
return ans;
} for(rg int i=a;i<=l*blo;i++) {
++AQ[v[i]];
if((AQ[v[i]]+num[r-1][v[i]]-num[l][v[i]])%2==0) ++ans;
else if((AQ[v[i]]+num[r-1][v[i]]-num[l][v[i]])>2) --ans;
}
for(rg int i=(r-1)*blo+1;i<=b;i++) {
++AQ[v[i]];
if((AQ[v[i]]+num[r-1][v[i]]-num[l][v[i]])%2==0) ++ans;
else if((AQ[v[i]]+num[r-1][v[i]]-num[l][v[i]])>2) --ans;
}
for(rg int i=a;i<=l*blo;i++) --AQ[v[i]];
for(rg int i=(r-1)*blo+1;i<=b;i++) --AQ[v[i]];
ans+=sum[l+1][r-1]; return ans;
}
void print(int x) {
if(x>9) print(x/10);
putchar(x%10+'0');
} int main() {
in(n),in(c),in(m); blo=sqrt(n);
for(rg int i=1;i<=n;i++) {
in(v[i]),pos[i]=(i-1)/blo+1;
num[pos[i]][v[i]]++;
} for(rg int i=1;i<=c;i++)
for(int j=1;j<=pos[n];j++)
num[j][i]+=num[j-1][i]; for(rg int i=1,cnt=0;i<=pos[n];i++,cnt=0) {
for(rg int j=(i-1)*blo+1;j<=n;j++) {
++AQ[v[j]];
if(AQ[v[j]]%2==0) ++cnt;
else if(AQ[v[j]]>2) --cnt;
sum[i][pos[j]]=cnt;
}
for(rg int j=(i-1)*blo+1;j<=n;j++) --AQ[v[j]];
} for(rg int i=1,ans=0;i<=m;i++) {
int l,r; in(l),in(r);
l=(l+ans)%n+1,r=(r+ans)%n+1;
if(l>r) swap(l,r);
print(ans=query(l,r)),putchar('\n');
}
}

博主蒟蒻,随意转载.但必须附上原文链接

http://www.cnblogs.com/real-l/

洛谷P4135 作诗 (分块)的更多相关文章

  1. 洛谷 P4135 作诗 题解

    题面. 之前做过一道很类似的题目 洛谷P4168蒲公英 ,然后看到这题很快就想到了解法,做完这题可以对比一下,真的很像. 题目要求区间内出现次数为正偶数的数字的数量. 数据范围1e5,可以分块. 我们 ...

  2. 洛谷 P4135 作诗(分块)

    题目链接 题意:\(n\) 个数,每个数都在 \([1,c]\) 中,\(m\) 次询问,每次问在 \([l,r]\) 中有多少个数出现偶数次.强制在线. \(1 \leq n,m,c \leq 10 ...

  3. 洛谷P4135 作诗(不一样的分块)

    题面 给定一个长度为 n n n 的整数序列 A A A ,序列中每个数在 [ 1 , c ] [1,c] [1,c] 范围内.有 m m m 次询问,每次询问查询一个区间 [ l , r ] [l, ...

  4. 洛谷P4135 作诗

    题意:[l,r]之间有多少个数出现了正偶数次.强制在线. 解:第一眼想到莫队,然后发现强制在线...分块吧. 有个很朴素的想法就是蒲公英那题的套路,做每块前缀和的桶. 然后发现这题空间128M,数组大 ...

  5. 洛谷 P4135 作诗

    分块大暴力,跟区间众数基本一样 #pragma GCC optimize(3) #include<cstdio> #include<algorithm> #include< ...

  6. P4135 作诗——分块

    题目:https://www.luogu.org/problemnew/show/P4135 分块大法: 块之间记录答案,每一块记录次数前缀和: 注意每次把桶中需要用到位置赋值就好了: 为什么加了特判 ...

  7. 洛谷P4198 楼房重建 (分块)

    洛谷P4198 楼房重建 题目描述 小A的楼房外有一大片施工工地,工地上有N栋待建的楼房.每天,这片工地上的房子拆了又建.建了又拆.他经常无聊地看着窗外发呆,数自己能够看到多少栋房子. 为了简化问题, ...

  8. 洛谷P3247 [HNOI2016]最小公倍数 [分块,并查集]

    洛谷 思路 显然,为了达到这个最小公倍数,只能走\(a,b\)不是很大的边. 即,当前询问的是\(A,B\),那么我们只能走\(a\leq A,b\leq B\)的边. 然而,为了达到这最小公倍数,又 ...

  9. 洛谷P4135 Ynoi2016 掉进兔子洞 (带权bitset?/bitset优化莫队 模板) 题解

    题面. 看到这道题,我第一反应就是莫队. 我甚至也猜出了把所有询问的三个区间压到一起处理然后分别计算对应询问答案. 但是,这么复杂的贡献用什么东西存?难道要开一个数组 query_appear_tim ...

随机推荐

  1. Spring Cloud(八):配置中心(服务化与高可用)【Finchley 版】

    Spring Cloud(八):配置中心(服务化与高可用)[Finchley 版]  发表于 2018-04-19 |  更新于 2018-04-26 |  本文接之前的<Spring Clou ...

  2. DNA序列 (DNA Consensus String,ACM/ICPC Seoul 2006,UVa1368

    题目描述:算法竞赛入门经典习题3-7 题目思路:每列出现最多的距离即最短 #include <stdio.h> #include <string.h> int main(int ...

  3. Python3 Tkinter-Pack

    1.创建 from tkinter import * root=Tk() print(root.pack_slaves()) Label(root,text='pack').pack() print( ...

  4. Docker学习笔记总结

    Docker学习笔记 https://yeasy.gitbooks.io/docker_practice/content/   一 环境搭建 Ubuntu安装 .添加软件源的GPG密钥 curl -f ...

  5. oracle常用函数总结

    Oracle常用函数总结 ---oracle常用函数-----一.数值型常用函数----取整数--select floor(10.1) from dual;--将n四舍五入,保留小数点后m位(默认情况 ...

  6. 【转】Angular.js VS. Ember.js:谁将成为Web开发的新宠?

    本文源自于Quora网站的一个问题,作者称最近一直在为一个新的Rails项目寻找一个JavaScript框架,通过筛选,最终纠结于 Angular.js和 Ember.js. 这个问题获得了大量的关注 ...

  7. 软工1816 · Alpha冲刺(1/10)

    团队信息 队名:爸爸饿了 组长博客:here 作业博客:here 组员情况 组员1(组长):王彬 过去两天完成了哪些任务 前后端代码规范统一 针对之前的alpha冲刺安排进一步细化任务卡片 明确apl ...

  8. sql分页使用join提高性能

    今天在分析系统中的分页sql时意外知道了使用join可以提高分页性能. 逻辑是join部分使用单一表,单一字段排序分页,然后join大表.

  9. 团队作业7——第二次项目冲刺(Beta版本)-第一篇

    1.当天站立式会议照片: 2.工作分工: 团队成员 分工 郭达22120 项目整合,后台代码 刘德培44060 数据库模块后台连接 石浩洋22061 前台界面优化 曾繁钦22056 前台界面优化.测试 ...

  10. Debian实验机 常用命令

    1.开启中文输入法 fcitx 2. 开启无线连接 wicd 3. 远程连接 ssh root@XXX.XXX.XXX.XXX 4. 启动Ulipad ~/ulipad-master# python ...