百度百科

Definition&Solution

  线段树是一种log级别的树形结构,可以处理区间修改以及区间查询问题。期望情况下,复杂度为O(nlogn)。

   核心思想见百度百科,线段树即将每个线段分成左右两个线段做左右子树。一个线段没有子树,当且仅当线段表示的区间为[a,a]。

   由于编号为k的节点的子节点为2k以及2k+1,线段树可以快速的递归左右叶节点。

   lazy标记:当进行区间修改的时候,如果一个区间整体全部被包含于要修改的区间,则可以将该区间的值修改后,将lazy标记打在区间上,不再递归左右区间。

   例如,要修改[15,30]区间整体+2,当前区间为[16,24],被包含于要修改的区间。记代表区间[16,24]的节点编号为k,则tree[k]+=2*(24-16+1),同时lazy[k]+=2。

   在下次修改或查询到k节点时,进行lazy的下放,即如下代码

inline void Free(cl l,cl r,cl p) {
    ll m=(l+r)>>,dp=p<<;
    tree[dp]+=(m-l+)*lazy[p];tree[dp+]+=(r-m)*lazy[p];
    lazy[dp]+=lazy[p];lazy[dp+]+=lazy[p];
    lazy[p]=;
}

   注意:被打上lazy标记的区间实际上已经修改完区间和,每次free修改的是子区间

Example

传送门

Description

已知一个数列,你需要进行下面两种操作:

1.将某区间每一个数加上x

2.求出某区间每一个数的和

Input

第一行包含两个整数N、M,分别表示该数列数字的个数和操作的总个数。

第二行包含N个用空格分隔的整数,其中第i个数字表示数列第i项的初始值。

接下来M行每行包含3或4个整数,表示一个操作,具体如下:

操作1: 格式:1 x y k 含义:将区间[x,y]内每个数加上k

操作2: 格式:2 x y 含义:输出区间[x,y]内每个数的和

Output

输出包含若干行整数,即为所有操作2的结果。

Sample Input


Sample Output


Hint

时空限制:1000ms,128M

数据规模:

对于30%的数据:N<=8,M<=10

对于70%的数据:N<=1000,M<=10000

对于100%的数据:N<=100000,M<=100000

Solution

模板题。有一些需要注意的地方会在summary写明

Code

#include<cstdio>
#define maxn 100010
#define maxt 400010
#define ll long long int
#define cl const long long int

inline void qr(long long &x) {
    ;
    ')    {
        ;
        ch=getchar();
    }
    )+(x<<)+(ch^),ch=getchar();
    x*=f;
    return;
}

inline long long max(const long long &a,const long long &b) {if(a>b) return a;else return b;}
inline long long min(const long long &a,const long long &b) {if(a<b) return a;else return b;}
inline ) return x;else return -x;}

inline void swap(long long &a,long long &b) {
    long long c=a;a=b;b=c;return;
}

ll n,m,MU[maxn],sign,a,b,c;

ll tree[maxt],lazy[maxt];

void build(const ll l,const ll r,const ll p) {
    if(l>r)    return;
    if(l==r) {tree[p]=MU[l];return;}
    ll m=(l+r)>>,dp=p<<;
    build(l,m,dp);build(m+,r,dp+);
    tree[p]=tree[dp]+tree[dp+];
}

inline void Free(cl l,cl r,cl p) {
    ll m=(l+r)>>,dp=p<<;
    tree[dp]+=(m-l+)*lazy[p];tree[dp+]+=(r-m)*lazy[p];
    lazy[dp]+=lazy[p];lazy[dp+]+=lazy[p];
    lazy[p]=;
}

inline )*v;lazy[p]+=v;}

void add(cl l,cl r,cl p,cl aiml,cl aimr,cl v) {
    if(l>r) return;
    if(l>aimr||r<aiml) {return;}
    if(l>=aiml&&r<=aimr) {wohenlan(l,r,p,v);return;}
    Free(l,r,p);
    ll m=(l+r)>>,dp=p<<;
    add(l,m,dp,aiml,aimr,v);add(m+,r,dp+,aiml,aimr,v);
    tree[p]=tree[dp]+tree[dp+];
}

ll ask(cl l,cl r,cl p,cl aiml,cl aimr) {
    ;
    ;}
    if(l>=aiml&&r<=aimr) {return tree[p];}
    Free(l,r,p);
    ll m=(l+r)>>,dp=p<<;
    ,r,dp+,aiml,aimr);
}

int main() {
    qr(n);qr(m);
    ;i<=n;++i) qr(MU[i]);
    build(1ll,n,1ll);
    while(m--) {
        sign=a=b=;qr(sign);qr(a);qr(b);
        ) {
            c=;qr(c);
            add(,n,,a,b,c);
        }
        , n, , a, b));
    }
    ;
}

Summary

  1、线段树大小要开4*n。理论上线段树会有2*n个子节点,但是试试这棵线段树:1 2 3 4 5

      如图所示:

         可以看到,节点数确实是6*2-1=11个,但是由于我们每个节点编号都严格按照母节点*2(+1)进行编号,所以我们的编号开到了2*n之外。开4*n是比较保险的。

    2、注意对lazy标记的free操作要在确定区间可以再分以后进行。即先写

if(l>=aiml&&r<=aimr) {wohenlan(l,r,p,v);return;}

      或

if(l>=aiml&&r<=aimr) {return tree[p];}

      后,如果没有return,则证明区间一定是可再分的,即还没有递归到叶节点,这时才可以进行free操作。否则的话考虑在叶节点的编号可能大于2*n,我们在叶节点free了一下,标记被下放到了4*n以外……

      然后你就炸了。

【线段树】【P3372】模板-线段树的更多相关文章

  1. 【数据结构与算法】Trie(前缀树)模板和例题

    Trie 树的模板 Trie 树的简介 Trie树,又称字典树,单词查找树或者前缀树,是一种用于快速检索的多叉树结构,如英文字母的字典树是一个26叉树,数字的字典树是一个10叉树.他的核心思想是空间换 ...

  2. hdu 1754 I Hate It (模板线段树)

    http://acm.hdu.edu.cn/showproblem.php?pid=1754 I Hate It Time Limit: 9000/3000 MS (Java/Others)    M ...

  3. hdu3966 树链剖分点权模板+线段树区间更新/树状数组区间更新单点查询

    点权树的模板题,另外发现树状数组也是可以区间更新的.. 注意在对链进行操作时方向不要搞错 线段树版本 #include<bits/stdc++.h> using namespace std ...

  4. 洛谷P3373 [模板]线段树 2(区间增减.乘 区间求和)

    To 洛谷.3373 [模板]线段树2 题目描述 如题,已知一个数列,你需要进行下面两种操作: 1.将某区间每一个数加上x 2.将某区间每一个数乘上x 3.求出某区间每一个数的和 输入输出格式 输入格 ...

  5. LuoguP3834 【模板】可持久化线段树 1(主席树)|| 离散化

    题目:[模板]可持久化线段树 1(主席树) 不知道说啥. #include<cstdio> #include<cstring> #include<iostream> ...

  6. 【洛谷P3834】(模板)可持久化线段树 1(主席树)

    [模板]可持久化线段树 1(主席树) https://www.luogu.org/problemnew/show/P3834 主席树支持历史查询,空间复杂度为O(nlogn),需要动态开点 本题用一个 ...

  7. Pascal 线段树 lazy-tag 模板

    先说下我的代码风格(很丑,勿喷) maxn表示最大空间的四倍 tree数组表示求和的线段树 delta表示增减的增量标记 sign表示覆盖的标记 delta,sign实际上都是lazy标志 pushd ...

  8. 有趣的线段树模板合集(线段树,最短/长路,单调栈,线段树合并,线段树分裂,树上差分,Tarjan-LCA,势能线段树,李超线段树)

    线段树分裂 以某个键值为中点将线段树分裂成左右两部分,应该类似Treap的分裂吧(我菜不会Treap).一般应用于区间排序. 方法很简单,就是把分裂之后的两棵树的重复的\(\log\)个节点新建出来, ...

  9. 洛谷P3834 [模板]可持久化线段树1(主席树) [主席树]

    题目传送门 可持久化线段树1(主席树) 题目背景 这是个非常经典的主席树入门题——静态区间第K小 数据已经过加强,请使用主席树.同时请注意常数优化 题目描述 如题,给定N个正整数构成的序列,将对于指定 ...

随机推荐

  1. Appium(Python)API

    1.创建新的会话desired_caps = desired_caps = {  'platformName': 'Android',  'platformVersion': '7.0',  'dev ...

  2. Selenium自动化测试第一天(上)

    如有任何学习问题,可以添加作者微信:lockingfree 目录 Selenium自动化测试基础 Selenium自动化测试第一天(上) Selenium自动化测试第一天(下) Selenium自动化 ...

  3. artDialog使用说明(弹窗API)

    Js代码 2. 传入HTMLElement    备注:1.元素不是复制而是完整移动到对话框中,所以原有的事件与属性都将会保留 2.如果隐藏元素被传入到对话框,会设置display:block属性显示 ...

  4. Django - day01 快速回忆ORM操作

    Django - day01 Model的增删改查找 得益于Django的ORM模型,用面向对象的思想来操作数据库使得数据库的操作一切变得简洁了很多. 0. 建表 在应用下的models.py中建立一 ...

  5. 【forEach控制器】-(针对,在不知道取到得参数有多少?但是要全部执行每一条的情况)

    1.使用json提取器,提取全部参数 2.设置forEach控制器,他会自己把json提起器,取到得所有值,全部使用一次再停止. z

  6. day-15 用opencv怎么扫描图像,利用查找表和计时

    一.本节知识预览 1.  怎样遍历图像的每一个像素点? 2.  opencv图像矩阵怎么被存储的? 3.  怎样衡量我们算法的性能? 4.  什么是查表,为什么要使用它们? 二.什么是查表,为什么要使 ...

  7. SpringCloud IDEA 教学 (五) 断路器控制台(HystrixDashboard)

    写在开头 断路器控制台是为了查看断路器运行情况而研发的.本章介绍了断路器控制台的搭建,代码基于之前Client的搭建.HystrixDashboard基于之前配置好的,使用了HystrixComman ...

  8. 最全NB-IoT/eMTC物联网解决方案名录汇总

    NB-IoT/eMTC等蜂窝物联网技术的成熟和商用,占据低功耗广域网络(LPWAN)的主流地位,推动全球物联网新一轮发展热潮,越来越多的行业开始采用物联网方案来解决解决实际问题.实现落地应用,越来越多 ...

  9. Mininet实验 MAC地址学习分析

    拓扑图 学习过程分析 首先交换机A和交换机B一开始的MAC地址表都是空的. 此时主机11向主机33发送一个数据帧. 数据帧会先到达交换机A,交换机A会获得主机11的MAC地址和端口号.(此时交换机A的 ...

  10. PMS

    "通讯录--PMS"功能介绍及界面展示 首先是我们的登陆界面,以绿色为基调,配以繁星组成的星阵图,寓意为"散是满天星",希望每一位同学能在各自的生活中闪耀. 当 ...