cf 442 div2 F. Ann and Books(莫队算法)

题意:

\(给出n和k,和a_i,sum_i表示前i个数的和,有q个查询[l,r]\)

每次查询区间\([l,r]内有多少对(i,j)满足l <= i <= j <= r 且 sum[j] - sum[i-1] = k\)

思路:

区间左右端点的挪动对答案的贡献符合加减性质,直接用莫队算法即可

复杂度\(O(n * sqrt(n) * log(maxsum))\) 过高

考虑先离散化预处理出所有位置 将\(log\)去掉

#include<bits/stdc++.h>
#define LL long long
using namespace std;
const int N = 2e5 + 10;
struct Q{
int l,r,bl,id;
Q(){};
bool operator<(const Q&rhs){
if(bl == rhs.bl) return r < rhs.r;
return bl < rhs.bl;
}
}qr[N];
int n,k;
LL ans[N],value[N];
int x[N],y[N],z[N],cnt[N * 3],type[N];
vector<LL> se;
int main(){ while(cin>>n>>k){
memset(cnt, 0, sizeof(cnt));
se.clear();
for(int i = 1;i <= n;i++) scanf("%d",&type[i]);
for(int i = 1;i <= n;i++){
scanf("%d",&value[i]);
if(type[i] == 1) value[i] += value[i-1];
else value[i] = value[i-1] - value[i];
}
for(int i = 0;i <= n;i++) {
se.push_back(value[i]);
se.push_back(value[i] + k);
se.push_back(value[i] - k);
}
sort(se.begin(), se.end());
se.erase(unique(se.begin(),se.end()),se.end());
for(int i = 0;i <= n;i++){
x[i] = lower_bound(se.begin(),se.end(),value[i]) - se.begin();
y[i] = lower_bound(se.begin(),se.end(),value[i] + k) - se.begin();
z[i] = lower_bound(se.begin(),se.end(),value[i] - k) - se.begin();
}
int block_size = sqrt(n + 0.5);
int q;
cin>>q;
for(int i = 0;i < q;i++){
scanf("%d%d",&qr[i].l,&qr[i].r);
qr[i].id = i;
qr[i].l--;
qr[i].bl = qr[i].l / block_size;
}
sort(qr, qr + q);
int L = 0,R = -1;
LL res = 0;
for(int i = 0;i < q;i++){
while(qr[i].l > L) {
cnt[x[L]]--;
res -= cnt[y[L++]];
}
while(qr[i].l < L) {
res += cnt[y[--L]];
cnt[x[L]]++;
}
while(qr[i].r > R){
res += cnt[z[++R]];
cnt[x[R]]++;
}
while(qr[i].r < R) {
cnt[x[R]]--;
res -= cnt[z[R--]];
}
ans[qr[i].id] = res;
}
for(int i = 0;i < q;i++) printf("%lld\n",ans[i]);
}
return 0;
}

cf 442 div2 F. Ann and Books(莫队算法)的更多相关文章

  1. Codeforces 877F Ann and Books 莫队

    转换成前缀和, 预处理一下然后莫队. #include<bits/stdc++.h> #define LL long long #define fi first #define se se ...

  2. Codeforces #442 Div2 F

    #442 Div2 F 题意 给出一些包含两种类型(a, b)问题的问题册,每本问题册有一些题目,每次查询某一区间,问有多少子区间中 a 问题的数量等于 b 问题的数量加 \(k\) . 分析 令包含 ...

  3. BZOJ 2038: [2009国家集训队]小Z的袜子(hose) [莫队算法]【学习笔记】

    2038: [2009国家集训队]小Z的袜子(hose) Time Limit: 20 Sec  Memory Limit: 259 MBSubmit: 7687  Solved: 3516[Subm ...

  4. Bzoj 2038---[2009国家集训队]小Z的袜子(hose) 莫队算法

    题目链接 http://www.lydsy.com/JudgeOnline/problem.php?id=2038 Description 作为一个生活散漫的人,小Z每天早上都要耗费很久从一堆五颜六色 ...

  5. 【BZOJ-3052】糖果公园 树上带修莫队算法

    3052: [wc2013]糖果公园 Time Limit: 200 Sec  Memory Limit: 512 MBSubmit: 883  Solved: 419[Submit][Status] ...

  6. BZOJ-2038 小Z的袜子(hose) 莫队算法

    2038: [2009国家集训队]小Z的袜子(hose) Time Limit: 20 Sec Memory Limit: 259 MB Submit: 5573 Solved: 2568 [Subm ...

  7. 【BZOJ】2038: [2009国家集训队]小Z的袜子(hose)(组合计数+概率+莫队算法+分块)

    http://www.lydsy.com/JudgeOnline/problem.php?id=2038 学了下莫队,挺神的orzzzz 首先推公式的话很简单吧... 看的题解是从http://for ...

  8. bzoj 3809 Gty的二逼妹子序列(莫队算法,块状链表)

    [题意] 回答若干个询问,(l,r,a,b):区间[l,r]内权值在[a,b]的数有多少[种]. [思路] 考虑使用块状链表实现莫队算法中的插入与删除. 因为权值处于1..n之间,所以我们可以建一个基 ...

  9. bzoj 3289 Mato的文件管理(莫队算法+BIT)

    [题目链接] http://www.lydsy.com/JudgeOnline/problem.php?id=3289 [题意] 回答若干个询问:[l,r]区间内的逆序对个数. [思路] 莫队算法,B ...

随机推荐

  1. android 学习六 构建用户界面和使用控件

    1.常用Android控件最终都会继承自View类 2.ViewGroup是一些布局类列表的基类,包括View和ViewGroup 3.构造界面的三种方法    a.完全使用代码(太灵活,而不好维护) ...

  2. 82. Single Number [easy]

    Description Given 2*n + 1 numbers, every numbers occurs twice except one, find it. Example Given [1, ...

  3. 随机森林random forest及python实现

    引言想通过随机森林来获取数据的主要特征 1.理论根据个体学习器的生成方式,目前的集成学习方法大致可分为两大类,即个体学习器之间存在强依赖关系,必须串行生成的序列化方法,以及个体学习器间不存在强依赖关系 ...

  4. 3D动态人脸识别技术分析——世纪晟人脸识别实现三维人脸建模

    - 目录 - 国内3D动态人脸识别现状概况 - 新形势下人脸识别技术发展潜力 - 基于深度学习的3D动态人脸识别技术分析 1. 非线性数据建模方法 2. 基于3D变形模型的人脸建模 - 案例结合——世 ...

  5. HTML5+Bootstrap 学习笔记 1

    HTML <header> 标签 <header> 标签定义文档的页眉(介绍信息),是 HTML 5 中的新标签. 参考资料: HTML <header> 标签 h ...

  6. html5 canvas绘制环形进度条,环形渐变色仪表图

    html5 canvas绘制环形进度条,环形渐变色仪表图                                             在绘制圆环前,我们需要知道canvas arc() 方 ...

  7. CP文件覆盖问题

    # \cp -r -a aaa/* /bbb[这次是完美的,没有提示按Y.传递了目录属性.没有略过目录]

  8. ViewPager的简单使用说明

    前提:工程中使用ViewPager,需要导入google提供的jar包(android-support-v4.jar). 要学习ViewPager的使用,建议直接看官方文档 Creating Swip ...

  9. 【转】C++后台开发之我见

    工作也快两年了,偶然看到自己以前写过的一些技术博客,发现自己自毕业后一直没有更新过自己的技术博客,趁现在是刚过完春节快要回公司工作之际,谈谈我个人对后台开发的一些个人见解,希望能够对在校的学生或者刚刚 ...

  10. RabbitMQ基本模式

    最近用到了一些RabbitMQ的东西,看了官方的Get Started,以此为模板总结一下. (1)生产者(发送方)发送消息到ExChange(含参:routingkey),ExChange通过bin ...