hdu 4635 Strongly connected
http://acm.hdu.edu.cn/showproblem.php?pid=4635
我们把缩点后的新图(实际编码中可以不建新图 只是为了概念上好理解)中的每一个点都赋一个值
表示是由多少个点缩成的 我们需要找所有端点 也可能出发点(只有出度) 也可能是结束点 (只有入度)
这个端点和外界(其它所有点)的联通性是单向的(只入或只出) 也可能没有联通
在保持这个端点与外界的单向联通性的情况下 任意加边
所以 当端点的值越小(包含点越少) 结果越优
代码:
#include<iostream>
#include<cstdio>
#include<algorithm>
#include<string>
#include<cstring>
#include<cmath>
#include<set>
#include<vector>
#include<list>
#include<stack>
#include<queue>
using namespace std; typedef pair<int,int> pp;
typedef long long ll;
const int N=100005;
const int M=100005;
int head[N],I;
struct node
{
int j,next;
}edge[M];
int low[N],dfn[N],f[N],deep;
bool in[N],visited[N];
stack<int>st;
pp p[M];
void add(int i,int j)
{
edge[I].j=j;
edge[I].next=head[i];
head[i]=I++;
}
bool ok(vector<int>& vt)
{
for(unsigned int i=0;i<vt.size();++i)
{
int x=vt[i];
for(int t=head[x];t!=-1;t=edge[t].next)
{
int y=edge[t].j;
if(f[x]!=f[y])
return false;
}
}
return true;
}
void tarjan(int x,int &M)
{
visited[x]=true;
in[x]=true;
st.push(x);
low[x]=dfn[x]=deep++;
for(int t=head[x];t!=-1;t=edge[t].next)
{
int j=edge[t].j;
if(visited[j]==false)
{
tarjan(j,M);
low[x]=min(low[x],low[j]); }else if(in[j]==true)
{
low[x]=min(low[x],dfn[j]);
}
}
if(low[x]==dfn[x])
{
vector<int>vt; int tmp=1;
while(st.top()!=x)
{
int k=st.top(); st.pop();
vt.push_back(k);
in[k]=false;
f[k]=x;
++tmp;
} int k=st.top(); st.pop();
vt.push_back(k);
in[k]=false;
f[k]=x;
if(ok(vt))
{
M=min(M,tmp);
}
}
}
void init(int n,int m)
{
memset(head,-1,sizeof(head));
I=0;
for(int i=0;i<m;++i)
add(p[i].first,p[i].second);
}
int solve(int n,int m)
{
init(n,m);
while(!st.empty()) st.pop();
for(int i=1;i<=n;++i)
{f[i]=i;}
memset(in,false,sizeof(in));
memset(visited,false,sizeof(visited));
deep=0;
int k=n+1;
for(int i=1;i<=n;++i)
if(!visited[i])
tarjan(i,k);
return k;
}
int main()
{
//freopen("data.in","r",stdin);
int T;
scanf("%d",&T);
for(int ca=1;ca<=T;++ca)
{
printf("Case %d: ",ca);
int n,m;
scanf("%d %d",&n,&m);
for(int i=0;i<m;++i)
scanf("%d %d",&p[i].first,&p[i].second);
int k=solve(n,m);
for(int i=0;i<m;++i)
swap(p[i].first,p[i].second);
k=min(solve(n,m),k);
if(k==n)
{cout<<"-1"<<endl;continue;}
ll ans=0;
ans=(ll)(n)*(ll)(n-1);
ans-=m;
ans-=(ll)(k)*(ll)(n-k);
cout<<ans<<endl;
}
return 0;
}
hdu 4635 Strongly connected的更多相关文章
- HDU 4635 —— Strongly connected——————【 强连通、最多加多少边仍不强连通】
Strongly connected Time Limit:1000MS Memory Limit:32768KB 64bit IO Format:%I64d & %I64u ...
- hdu 4635 Strongly connected 强连通缩点
题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=4635 题意:给你一个n个点m条边的图,问在图不是强连通图的情况下,最多可以向图中添多少条边,若图为原来 ...
- HDU 4635 Strongly connected (Tarjan+一点数学分析)
Strongly connected Time Limit : 2000/1000ms (Java/Other) Memory Limit : 32768/32768K (Java/Other) ...
- HDU 4635 Strongly connected (2013多校4 1004 有向图的强连通分量)
Strongly connected Time Limit: 2000/1000 MS (Java/Others) Memory Limit: 32768/32768 K (Java/Other ...
- HDU 4635 Strongly connected(强连通)经典
Strongly connected Time Limit: 2000/1000 MS (Java/Others) Memory Limit: 32768/32768 K (Java/Other ...
- hdu 4635 Strongly connected(强连通)
考强连通缩点,算模板题吧,比赛的时候又想多了,大概是不自信吧,才开始认真搞图论,把题目想复杂了. 题意就是给你任意图,保证是simple directed graph,问最多加多少条边能使图仍然是si ...
- HDU 4635 Strongly connected (强连通分量)
题意 给定一个N个点M条边的简单图,求最多能加几条边,使得这个图仍然不是一个强连通图. 思路 2013多校第四场1004题.和官方题解思路一样,就直接贴了~ 最终添加完边的图,肯定可以分成两个部X和Y ...
- HDU 4635 Strongly connected(强连通分量,变形)
题意:给出一个有向图(不一定连通),问最多可添加多少条边而该图仍然没有强连通. 思路: 强连通分量必须先求出,每个强连通分量包含有几个点也需要知道,每个点只会属于1个强连通分量. 在使图不强连通的前提 ...
- HDU 4635 - Strongly connected(2013MUTC4-1004)(强连通分量)
t这道题在我们队属于我的范畴,最终因为最后一个环节想错了,也没搞出来 题解是这么说的: 最终添加完边的图,肯定可以分成两个部X和Y,其中只有X到Y的边没有Y到X的边,那么要使得边数尽可能的多,则X部肯 ...
随机推荐
- WIN7远程桌面连接方法!
WIN7远程桌面连接方法!
- 25条提高iOS app性能的方法和技巧
以下这些技巧分为三个不同那个的级别---基础,中级,高级. 基础 这些技巧你要总是想着实现在你开发的App中. 1. 用ARC去管理内存(Use ARC to Manage Memory) 2.适当的 ...
- 最快速的Android开发环境搭建ADT-Bundle及Hello World
ADT-Bundle for Windows 是由Google Android官方提供的集成式IDE,已经包含了Eclipse,你无需再去下载Eclipse,并且里面已集成了插件,它解决了大部分新手通 ...
- 《Node.js开发指南》的少许坑儿~
由于express升级到3.0,造成这本书看起来more and more蛋疼.记录少许坑儿,方便后来人. 一.node.js在windows下的安装 书中在两处介绍了两种方式,其实现在的node.j ...
- win32 公用对话框
## 公用对话框 ## 公用对话框:打开文件.保存文件.选择字体.选择颜色.查找.查找替换... 等等.(我就用过这几个其他的可以猜测用法,给出部分代码,这里我就不一一贴代码了,用到了在完善吧) 用到 ...
- C#网络爬虫
CronMaker is a utility which helps you to build cron expressions. CronMaker uses Quartz open source ...
- 模板引擎:ArtTemplate 使用入门和简单的使用
下载地址:https://github.com/aui/artTemplate 快速上手请参考:https://github.com/aui/artTemplate 通过阅读artTemplate原文 ...
- 关于JQ的$.deferred()
此文章是在网络上看到的. 一.什么是deferred对象? 开发网站的过程中,我们经常遇到某些耗时很长的javascript操作.其中,既有异步的操作(比如ajax读取服务器数据),也有同步的操作(比 ...
- Ubuntu安装R及RStudio
-------------------------------------------------------------- 自学记录,交流请发送邮件至gxz1984@gmail.com ------ ...
- GSEA的使用
下载GSEA 网址:http://software.broadinstitute.org/gsea/downloads.jsp gsea2-2.2.2.jar c2.cp.kegg.v5.1.symb ...