2299: [HAOI2011]向量

Time Limit: 10 Sec  Memory Limit: 256 MB
Submit:
1118  Solved: 488
[Submit][Status][Discuss]

Description

给你一对数a,b,你可以任意使用(a,b), (a,-b), (-a,b), (-a,-b), (b,a), (b,-a), (-b,a),
(-b,-a)这些向量,问你能不能拼出另一个向量(x,y)。

说明:这里的拼就是使得你选出的向量之和为(x,y)

Input

第一行数组组数t,(t<=50000)

接下来t行每行四个整数a,b,x,y 
(-2*109<=a,b,x,y<=2*109)

Output

t行每行为Y或者为N,分别表示可以拼出来,不能拼出来

Sample Input

3
2 1 3 3
1 1 0
1
1 0 -2 3

Sample Output

Y
N
Y

HINT

样例解释:
第一组:(2,1)+(1,2)=(3,3)
第三组:(-1,0)+(-1,0)+(0,1)+(0,1)+(0,1)=(-2,3)

Source

Solution

首先我们把这些东西组合一下,发现其实这些东西其实相当于是4种变换

(x+-2a,y)/(x,y+-2a)

(x+-2b,y)/(x+-2b,y)

(x+a,y+b)

(x+b,y+a)

那么用裴蜀定理判定一下

证明看这里:折越

Code

#include<iostream>
#include<cstdio>
#include<algorithm>
#include<cmath>
#include<cstring>
using namespace std;
int t;
long long d;
long long Gcd(long long a,long long b) {if (b==) return a; return Gcd(b,a%b);}
bool check(long long a,long long b) {if (!(a%d) && !(b%d)) return ; return ;}
long long a,b,x,y;
int main()
{
scanf("%d",&t);
while (t--)
{
scanf("%lld%lld%lld%lld",&a,&b,&x,&y);
d=Gcd(a,b)<<;
if (check(x+a,y+b) || check(x+b,y+a) || check(x+a+b,y+a+b) || check(x,y)) puts("Y");
else puts("N");
}
return ;
}

【BZOJ-2299】向量 裴蜀定理 + 最大公约数的更多相关文章

  1. BZOJ 2299 向量(裴蜀定理)

    题意:给你一对数a,b,你可以任意使用(a,b), (a,-b), (-a,b), (-a,-b), (b,a), (b,-a), (-b,a), (-b,-a)这些向量,问你能不能拼出另一个向量(x ...

  2. [HAOI2011] 向量 - 裴蜀定理

    给你一对数a,b,你可以任意使用(a,b), (a,-b), (-a,b), (-a,-b), (b,a), (b,-a), (-b,a), (-b,-a)这些向量,问你能不能拼出另一个向量(x,y) ...

  3. 【BZOJ-1441】Min 裴蜀定理 + 最大公约数

    1441: Min Time Limit: 5 Sec  Memory Limit: 64 MBSubmit: 471  Solved: 314[Submit][Status][Discuss] De ...

  4. bzoj 1441: Min 裴蜀定理

    题目: 给出\(n\)个数\((A_1, ... ,A_n)\)现求一组整数序列\((X_1, ... X_n)\)使得\(S=A_1*X_1+ ...+ A_n*X_n > 0\),且\(S\ ...

  5. [BZOJ 2299][HAOI 2011]向量 题解(裴蜀定理)

    [BZOJ 2299][HAOI 2011]向量 Description 给你一对数a,b,你可以任意使用(a,b), (a,-b), (-a,b), (-a,-b), (b,a), (b,-a), ...

  6. BZOJ2299 [HAOI2011]向量 【裴蜀定理】

    题目链接 BZOJ2299 题解 题意就是给我们四个方向的向量\((a,b),(b,a),(-a,b),(b,-a)\),求能否凑出\((x,y)\) 显然我们就可以得到一对四元方程组,用裴蜀定理判断 ...

  7. bzoj 2257[Jsoi2009]瓶子和燃料 数论/裴蜀定理

    题目 Description jyy就一直想着尽快回地球,可惜他飞船的燃料不够了. 有一天他又去向火星人要燃料,这次火星人答应了,要jyy用飞船上的瓶子来换.jyy 的飞船上共有 N个瓶子(1< ...

  8. 【BZOJ】1441: Min(裴蜀定理)

    http://www.lydsy.com/JudgeOnline/problem.php?id=1441 这东西竟然还有个名词叫裴蜀定理................ 裸题不说....<初等数 ...

  9. BZOJ 2257: [Jsoi2009]瓶子和燃料 裴蜀定理

    2257: [Jsoi2009]瓶子和燃料 Time Limit: 1 Sec Memory Limit: 256 MB 题目连接 http://www.lydsy.com/JudgeOnline/p ...

随机推荐

  1. usb驱动开发15之设备生命线

    总算是进入了HCD的片儿区,既然来到一个片区,怎么都要去拜会一下山头几个大哥吧.,先回忆一些我们怎么到这里的?给你列举一个调用函数过程usb_control_msg->usb_internal_ ...

  2. EntityFramework 启用迁移 Enable-Migrations 报异常 "No context type was found in the assembly"

    转自:http://www.cnblogs.com/stevenhqq/archive/2013/04/18/3028350.html 以前做项目的时候,没有采用分类库的形式,所以迁移一致非常顺利,没 ...

  3. 学习C++.Primer.Plus 8 函数探幽

    1. 内联函数 普通函数调用: 存储调用指令的地址->将函数参数复制到堆栈->跳到函数地址执行代码(返回值放到寄存器)->跳回调用指令处 2.  当代码执行时间很短,且会被大量调用的 ...

  4. oracle: job使用

    oracle的job,实际上就是数据库内置的定时任务,类似代码中的Timer功能.下面是使用过程: 这里我们模拟一个场景:定时调用存储过程P_TEST_JOB 向表TEST_JOB_LOG中插入数据 ...

  5. mac/linux中vim永久显示行号、开启语法高亮

    步骤1: cp /usr/share/vim/vimrc ~/.vimrc 先复制一份vim配置模板到个人目录下 注:redhat 改成 cp /etc/vimrc ~/.vimrc 步骤2: vi ...

  6. 数据挖掘系列(9)——BP神经网络算法与实践

    神经网络曾经很火,有过一段低迷期,现在因为深度学习的原因继续火起来了.神经网络有很多种:前向传输网络.反向传输网络.递归神经网络.卷积神经网络等.本文介绍基本的反向传输神经网络(Backpropaga ...

  7. CI(CodeIgniter)框架入门教程——第二课 初始MVC

    本文转载自:http://www.softeng.cn/?p=53 今天的主要内容是,使用CodeIgniter框架完整的MVC内容来做一个简单的计算器,通过这个计算器,让大家能够体会到我在第一节课中 ...

  8. Linux权限

    在Linux中要修改一个文件夹或文件的权限我们需要用到linux chmod命令来做,下面我写了几个简单的实例大家可参考一下. 语法如下: chmod [who] [+ | - | =] [mode] ...

  9. Orchard搜索与索引

    Orchard提供了索引与搜索的功能.开启Indexing属性可实现索引功能,伴随着一个特定的索引执行(默认包含基础搜索引擎).除了Indexing和Search提供查询索引的功能外(通过关键字或使用 ...

  10. VC维含义

    VC维含义的个人理解 有关于VC维可以在很多机器学习的理论中见到,它是一个重要的概念.在读<神经网络原理>的时候对一个实例不是很明白,通过这段时间观看斯坦福的机器学习公开课及相关补充材料, ...