2299: [HAOI2011]向量

Time Limit: 10 Sec  Memory Limit: 256 MB
Submit:
1118  Solved: 488
[Submit][Status][Discuss]

Description

给你一对数a,b,你可以任意使用(a,b), (a,-b), (-a,b), (-a,-b), (b,a), (b,-a), (-b,a),
(-b,-a)这些向量,问你能不能拼出另一个向量(x,y)。

说明:这里的拼就是使得你选出的向量之和为(x,y)

Input

第一行数组组数t,(t<=50000)

接下来t行每行四个整数a,b,x,y 
(-2*109<=a,b,x,y<=2*109)

Output

t行每行为Y或者为N,分别表示可以拼出来,不能拼出来

Sample Input

3
2 1 3 3
1 1 0
1
1 0 -2 3

Sample Output

Y
N
Y

HINT

样例解释:
第一组:(2,1)+(1,2)=(3,3)
第三组:(-1,0)+(-1,0)+(0,1)+(0,1)+(0,1)=(-2,3)

Source

Solution

首先我们把这些东西组合一下,发现其实这些东西其实相当于是4种变换

(x+-2a,y)/(x,y+-2a)

(x+-2b,y)/(x+-2b,y)

(x+a,y+b)

(x+b,y+a)

那么用裴蜀定理判定一下

证明看这里:折越

Code

#include<iostream>
#include<cstdio>
#include<algorithm>
#include<cmath>
#include<cstring>
using namespace std;
int t;
long long d;
long long Gcd(long long a,long long b) {if (b==) return a; return Gcd(b,a%b);}
bool check(long long a,long long b) {if (!(a%d) && !(b%d)) return ; return ;}
long long a,b,x,y;
int main()
{
scanf("%d",&t);
while (t--)
{
scanf("%lld%lld%lld%lld",&a,&b,&x,&y);
d=Gcd(a,b)<<;
if (check(x+a,y+b) || check(x+b,y+a) || check(x+a+b,y+a+b) || check(x,y)) puts("Y");
else puts("N");
}
return ;
}

【BZOJ-2299】向量 裴蜀定理 + 最大公约数的更多相关文章

  1. BZOJ 2299 向量(裴蜀定理)

    题意:给你一对数a,b,你可以任意使用(a,b), (a,-b), (-a,b), (-a,-b), (b,a), (b,-a), (-b,a), (-b,-a)这些向量,问你能不能拼出另一个向量(x ...

  2. [HAOI2011] 向量 - 裴蜀定理

    给你一对数a,b,你可以任意使用(a,b), (a,-b), (-a,b), (-a,-b), (b,a), (b,-a), (-b,a), (-b,-a)这些向量,问你能不能拼出另一个向量(x,y) ...

  3. 【BZOJ-1441】Min 裴蜀定理 + 最大公约数

    1441: Min Time Limit: 5 Sec  Memory Limit: 64 MBSubmit: 471  Solved: 314[Submit][Status][Discuss] De ...

  4. bzoj 1441: Min 裴蜀定理

    题目: 给出\(n\)个数\((A_1, ... ,A_n)\)现求一组整数序列\((X_1, ... X_n)\)使得\(S=A_1*X_1+ ...+ A_n*X_n > 0\),且\(S\ ...

  5. [BZOJ 2299][HAOI 2011]向量 题解(裴蜀定理)

    [BZOJ 2299][HAOI 2011]向量 Description 给你一对数a,b,你可以任意使用(a,b), (a,-b), (-a,b), (-a,-b), (b,a), (b,-a), ...

  6. BZOJ2299 [HAOI2011]向量 【裴蜀定理】

    题目链接 BZOJ2299 题解 题意就是给我们四个方向的向量\((a,b),(b,a),(-a,b),(b,-a)\),求能否凑出\((x,y)\) 显然我们就可以得到一对四元方程组,用裴蜀定理判断 ...

  7. bzoj 2257[Jsoi2009]瓶子和燃料 数论/裴蜀定理

    题目 Description jyy就一直想着尽快回地球,可惜他飞船的燃料不够了. 有一天他又去向火星人要燃料,这次火星人答应了,要jyy用飞船上的瓶子来换.jyy 的飞船上共有 N个瓶子(1< ...

  8. 【BZOJ】1441: Min(裴蜀定理)

    http://www.lydsy.com/JudgeOnline/problem.php?id=1441 这东西竟然还有个名词叫裴蜀定理................ 裸题不说....<初等数 ...

  9. BZOJ 2257: [Jsoi2009]瓶子和燃料 裴蜀定理

    2257: [Jsoi2009]瓶子和燃料 Time Limit: 1 Sec Memory Limit: 256 MB 题目连接 http://www.lydsy.com/JudgeOnline/p ...

随机推荐

  1. 如何将matlab画出的图片保存为要求精度

    · 来源:http://emuch.net/bbs/viewthread.php?tid=2705843 杂志社对投稿图片的分辨率通常有如下要求: TIFF: Colour or greyscale ...

  2. IE 和Firefox的js兼容性总结

    IE 和Firefox的js兼容性总结 12 August 2010 11:39 Thursday by 小屋 标签: 浏览器 方法 属性 IT 写法 一.函数和方法差异 1 . getYear()方 ...

  3. BZOJ 3524: [Poi2014]Couriers

    3524: [Poi2014]Couriers Time Limit: 20 Sec  Memory Limit: 256 MBSubmit: 1905  Solved: 691[Submit][St ...

  4. 【转】mysql触发器的实战(触发器执行失败,sql会回滚吗)

    1   引言Mysql的触发器和存储过程一样,都是嵌入到mysql的一段程序.触发器是mysql5新增的功能,目前线上凤巢系统.北斗系统以及哥伦布系统使用的数据库均是mysql5.0.45版本,很多程 ...

  5. [转]源代码的管理和发布:以SVN为例

    FROM : http://ju.outofmemory.cn/entry/47277 前几天在微博吐槽了SVN的几个不爽的地方:.svn文件满天飞.分支管理的麻烦.不爽一般来说都是有过对比后才有如此 ...

  6. Android性能优化之Systrace工具介绍(一) _&& Systrace生成的trace.html打开空白或者打不开的解决办法

    1.必须用Chrome打开 2.在mac电脑上,可能Chrome打开也是空白,解决办法是:在chrome地址栏中输入”chrome:tracing”,然后点击load按钮load你的trace.htm ...

  7. Linux 网络编程详解十一

    /** * read_timeout - 读超时检测函数,不含读操作 * @fd:文件描述符 * @wait_seconds:等待超时秒数,如果为0表示不检测超时 * 成功返回0,失败返回-1,超时返 ...

  8. Hibernated的sql查询

    记录一下学习Hibernate的心得 1.为什么HIbernate会支持原生态的sql查询? HQL查询语句虽然方便我们查询,但是基于HQL的查询会将查询出来的对象保存到hibernate的缓存当中, ...

  9. 给li设置float浮动属性之后,无法撑开外层ul的问题。(原址:http://www.cnblogs.com/cielzhao/p/5781462.html)

    最近在项目中有好几次遇到这个问题,感觉是浮动引起的,虽然用<div style="clear:both"></div>解决了,但自己不是特别明白,又在网上查 ...

  10. js获取上传的文件并用ajax提交

    <form id="form1" name="form1" encType="multipart/form-data" method= ...