1068: [SCOI2007]压缩

Time Limit: 1 Sec  Memory Limit: 128 MB
Submit: 1001  Solved: 615
[Submit][Status][Discuss]

Description

  给一个由小写字母组成的字符串,我们可以用一种简单的方法来压缩其中的重复信息。压缩后的字符串除了小写字母外还可以(但不必)包含大写字母R与M,其中M标记重复串的开始,R重复从上一个M(如果当前位置左边没有M,则从串的开始算起)开始的解压结果(称为缓冲串)。 bcdcdcdcd可以压缩为bMcdRR,下面是解压缩的过程

  另一个例子是abcabcdabcabcdxyxyz可以被压缩为abcRdRMxyRz。

Input

  输入仅一行,包含待压缩字符串,仅包含小写字母,长度为n。

Output

  输出仅一行,即压缩后字符串的最短长度。

Sample Input

bcdcdcdcdxcdcdcdcd

Sample Output

12

HINT

在第一个例子中,解为aaaRa,在第二个例子中,解为bMcdRRxMcdRR。

【限制】

100%的数据满足:1<=n<=50 100%的数据满足:1<=n<=50

Source

Solution

区间DP,做的太少了,以至于这道题转移设计出现一点错误,其实这道题写记搜比递推更容易理解.

状态很好想到$f[l][r][0/1]$表示区间$[l,r]$中有M/无M的最短,这样显然答案为$min(f[1][n][0],f[1][n][1])$

转移的时候显然是要枚举断点的, 断点为k,转移:

$f[i][j][1]=min(f[i][j][1],min(f[i][k][0],f[i][k][1])+min(f[k+1][j][0],f[k+1][j][1])+1);$

$f[i][j][0]=min(f[i][j][0],f[i][k][0]+j-k);$

然后如果枚举到的区间$[l,r]$,如果这个$[l,r]$可以缩成一个,那么就缩,所以得到$f[i][j][0]=f[i][(i+j)>>1][0]+1$

然后就可以了

Code

#include<iostream>
#include<cstdio>
#include<algorithm>
#include<cmath>
#include<cstring>
using namespace std;
#define MAXN 100
char S[MAXN];
int len,f[MAXN][MAXN][];
bool check(int l,int r)
{
int mid=(l+r)>>;
if ((r-l+)&) return ;
for (int i=; i<=mid-l+; i++) if (S[l+i-]!=S[mid+i]) return ;
return ;
}
int main()
{
scanf("%s",S+);
len=strlen(S+);
for (int i=len; i>=; i--)
for (int j=i; j<=len; j++)
{
f[i][j][]=f[i][j][]=j-i+;
for (int k=i; k<j; k++)
f[i][j][]=min(f[i][j][],min(f[i][k][],f[i][k][])+min(f[k+][j][],f[k+][j][])+);
for (int k=i; k<j; k++)
f[i][j][]=min(f[i][j][],f[i][k][]+j-k);
if (check(i,j)) f[i][j][]=f[i][(i+j)>>][]+;
if (j-i+==) f[i][j][]=len+;
}
printf("%d\n",min(f[][len][],f[][len][]));
return ;
}

这道题搞了一会,感觉有点zz

【BZOJ-1068】压缩 区间DP的更多相关文章

  1. [bzoj] 1068 压缩 || 区间dp

    原题 f[i][j][0/1]表示i-1处有一个M,i到j压缩后的长度,0/1表示i到j中有没有m. 初始为j-i+1 f[i][j][0]=min(f[i][j][0],f[i][k][0]+j-k ...

  2. bzoj 1068 [SCOI2007]压缩 区间dp

    [SCOI2007]压缩 Time Limit: 1 Sec  Memory Limit: 128 MBSubmit: 1644  Solved: 1042[Submit][Status][Discu ...

  3. ACM学习历程—HDU1584 蜘蛛牌(动态规划 && 状态压缩 || 区间DP)

    Description 蜘蛛牌是windows xp操作系统自带的一款纸牌游戏,游戏规则是这样的:只能将牌拖到比她大一的牌上面(A最小,K最大),如果拖动的牌上有按顺序排好的牌时,那么这些牌也跟着一起 ...

  4. B1068 [SCOI2007]压缩 区间dp

    这个题我状态想对了,但是转移错了...dp的代码难度都不大,但是思考含量太高了..不会啊,我太菜了. 其实这个题就是一个正常的区间dp,中间多了一个特判的转移就行了. 题干: Description ...

  5. [SCOI2007]压缩 区间dp

    明显是个区间dp,但是我区间dp就是个渣... f[i][j]表示区间i到j最短的字符长度:假设前面加了个M,所以初始化f[i][i]=2;当然最开始是不算M的,所以f[1][1]=1;然后就可以区间 ...

  6. 洛谷P2470 [SCOI2007]压缩(区间dp)

    题意 题目链接 Sol 神仙题Orz 考虑区间dp,如果我们只设\(f[l][r]\)表示\(s_{lr}\)被压缩的最小长度,而不去关心内部\(M\)分布的话,可能在转移的时候转移出非法状态 因此考 ...

  7. BZOJ 4380 Myjnie 区间DP

    4380: [POI2015]Myjnie Time Limit: 40 Sec  Memory Limit: 256 MBSec  Special JudgeSubmit: 162  Solved: ...

  8. 状态压缩---区间dp第一题

    标签: ACM 题目 Gappu has a very busy weekend ahead of him. Because, next weekend is Halloween, and he is ...

  9. 【CCF】路径压缩 区间dp

    [题意] 改编哈夫曼树,限制从左到右字母的编码按字典序递增 [思路] 因为是二进制编码,所以是二叉树: 因为是前缀码,所以每个字母都是叶子结点,不可能是内结点: 因为要按字典序递增,所以只能是相邻的结 ...

随机推荐

  1. 源码安装mysql

    1. 安装依赖组件 # yum install gcc gcc-c++ ncurses-devel perl -y   2. 安装cmake # wget http://www.cmake.org/f ...

  2. 单机多实例Tomcat部署

    单机单用户基础上, 如何运行多个tomcat实例. 首先是tomcat的目录结构 bin    – 包含所有运行tomcat的二进制和脚本文件 lib     – 包含tomcat使用的所有共享库 c ...

  3. PAT 1004. 成绩排名 (20) JAVA

    读入n名学生的姓名.学号.成绩,分别输出成绩最高和成绩最低学生的姓名和学号. 输入格式:每个测试输入包含1个测试用例,格式为 第1行:正整数n 第2行:第1个学生的姓名 学号 成绩 第3行:第2个学生 ...

  4. MVC 多级目录(控制器) 路由重写 及 多级Views目录 的寻找视图的规则

    转自:[原]Asp.net Mvc   多级控制器 路由重写 及 多级Views目录 的寻找视图的规则 asp.net mvc 为了更好的控制views的页面存放,和控制器的可读性,需要分开多级目录来 ...

  5. &11,散列表

    #1,是什么? 散列表(Hash table,也叫哈希表),是根据关键码值(Key value)而直接进行访问的数据结构.也就是说,它通过把关键码值映射到表中一个位置来访问记录,以加快查找的速度.这个 ...

  6. 在使用EF Code First开发时,遇到的“关系”问题,以及解决方法

    Entity Framework Code First 简称 EF CF也行,就是在开发的时候,以代码先行的原则,开发人员无需考虑 数据库端的一些问题(开发过程中基本不需要在数据库管理器上操作) 言归 ...

  7. Linux下SVN安装与基本操作

    1.安装svn linux下通过yum安装svn yum -y install subversion 本地Windows系统安装TortoiseSVN 2.配置 建立版本库目录 mkdir /home ...

  8. 自定义圆形控件RoundImageView并认识一下attr.xml

    今天我们来讲一下有关自定义控件的问题,今天讲的这篇是从布局自定义开始的,难度不大,一看就明白,估计有的同学或者开发者看了说,这种方式多此一举,但是小编我不这么认为,多一种解决方式,就多一种举一反三的学 ...

  9. 无法将分支 master 发布到远程 origin,因为远程存储库中已存在具有同一名称的分支

    无法将分支 master 发布到远程 origin,因为远程存储库中已存在具有同一名称的分支.发布此分支将导致远程存储库中的分支发生非快进更新. 第一次用oschina的git设置完远程仓库后提交出现 ...

  10. 沃罗诺伊图(Voronoi Diagram,也称作Dirichlet tessellation,狄利克雷镶嵌)

    沃罗诺伊图(Voronoi Diagram,也称作Dirichlet tessellation,狄利克雷镶嵌)是由俄国数学家格奥尔吉·沃罗诺伊建立的空间分割算法.灵感来源于笛卡尔用凸域分割空间的思想. ...