Description

  大富翁国因为通货膨胀,以及假钞泛滥,政府决定推出一项新的政策:现有钞票编号范围为1到N的阶乘,但是,政府只发行编号与M!互质的钞票。房地产第一大户沙拉公主决定预测一下大富翁国现在所有真钞票的数量。现在,请你帮助沙拉公主解决这个问题,由于可能张数非常大,你只需计算出对R取模后的答案即可。R是一个质数。

Input

第一行为两个整数T,R。R<=10^9+10,T<=10000,表示该组中测试数据数目,R为模后面T行,每行一对整数N,M,见题目描述 m<=n

Output

共T行,对于每一对N,M,输出1至N!中与M!素质的数的数量对R取模后的值

Sample Input

1 11
4 2

Sample Output

1

数据范围:
对于100%的数据,1 < = N , M < = 10000000

HINT

 

Source

Solution:这道题主要是推导和线性求逆元。
求1~N!内与M!互质的数的个数mod p。
首先,我们知道(x,y)=1=>(x,2y)=1……(其实我就不知道,我弱我自豪)
因为N!一定是M!的倍数,为什么呢,这我都知道,你说为什么。那么每找到一个与M!互质的数则有N!/M!个数与M!互质!
而M!内与其互质的数的个数不就是φ(M!)吗,而那些数又恰好是M!的质因数,那么,φ(m!)=(m!)*∏(pi-1)/pi (pi<=m),so,我们所求的就变成辣n!*∏(pi-1)/pi
看了po姐的blog十分仰慕
 #include <iostream>
#include <cstdio>
#include <cmath>
#define ll long long
#define N 10000000
using namespace std;
int n,m,p;
ll jc[],prime[],ine[],ans[];
bool notprime[];
void preproce()
{
int t=;
for (int i=;i<=N;i++)
{
if (!notprime[i]) prime[++t]=i;
for (int j=;j<=t&&prime[j]*i<=N;j++)
{
notprime[prime[j]*i]=;
if (!i%prime[j]) break;
}
}
jc[]=;
for (int i=;i<=N;i++) jc[i]=jc[i-]*i%p;
ine[]=;
for (int i=;i<=N&&i<p;i++) ine[i]=(p-p/i)*ine[p%i]%p;
ans[]=;
for (int i=;i<=N;i++)
{
if (!notprime[i]) ans[i]=ans[i-]*(i-)%p*ine[i%p]%p;
else ans[i]=ans[i-];
}
}
int main()
{
int T;
scanf("%d%d",&T,&p);
preproce();
while (T--)
{
scanf("%d%d",&n,&m);
printf("%d\n",jc[n]*ans[m]%p);
}
return ;
}
 

【BZOJ2186】【SDoi2008】沙拉公主的困惑 数论的更多相关文章

  1. [bzoj2186][Sdoi2008]沙拉公主的困惑——数论

    题目大意 求 \[\sum_{i = 1}^{N!} [gcd(i, M!) = 1]\] 题解 显然,题目就是求 \[N!(1-\frac{1}{p_1})(1-\frac{1}{p_2})...\ ...

  2. 【bzoj2186】: [Sdoi2008]沙拉公主的困惑 数论-欧拉函数

    [bzoj2186]: [Sdoi2008]沙拉公主的困惑 考虑当 gcd(a,b)=1 则 gcd(nb+a,b)=1 所以[1,N!]与M!互质的个数就是 筛出[1,M]所有的素数p[i] 以及逆 ...

  3. BZOJ2186 [Sdoi2008]沙拉公主的困惑 【数论,欧拉函数,线性筛,乘法逆元】

    2186: [Sdoi2008]沙拉公主的困惑 Time Limit: 10 Sec  Memory Limit: 259 MB Submit: 5003  Solved: 1725 [Submit] ...

  4. BZOJ2186: [Sdoi2008]沙拉公主的困惑(求[1,N!]与M!互素的个数)(线性筛)

    2186: [Sdoi2008]沙拉公主的困惑 Time Limit: 10 Sec  Memory Limit: 259 MBSubmit: 6103  Solved: 2060[Submit][S ...

  5. [bzoj2186][Sdoi2008]沙拉公主的困惑_数论

    沙拉公主的困惑 bzoj-2186 Sdoi-2008 题目大意:求N!中与M!互质的数的个数. 注释:$1\le N,M\le 10^7$. 想法:显然是求$\phi(M!)$.这东西其实只需要将数 ...

  6. BZOJ2186 SDOI2008沙拉公主的困惑(数论)

    由于n!是m!的倍数,而对于每个与m!互质且小于m!的数x,x+m!.x+2*m!……也与其互质,所以答案即为(n!/m!)*φ(m!). φ(m!)=m!*∏(1-1/pi).其中的pi即为1~m中 ...

  7. 【数论】【欧拉函数】【筛法求素数】【乘法逆元】【快速幂取模】bzoj2186 [Sdoi2008]沙拉公主的困惑

    http://www.cnblogs.com/BLADEVIL/p/3490321.html http://www.cnblogs.com/zyfzyf/p/3997986.html 翻了翻题解,这两 ...

  8. BZOJ2186: [Sdoi2008]沙拉公主的困惑

    传送门 常规数论题,利用欧拉函数的相关性质. 题求$[1,N!]$中与$M!$互质的数的个数,且$M \leq N$.然后根据欧拉函数的相关性质很容易得出这道题的答案为$\frac{\phi (M!) ...

  9. BZOJ 2186 SDOI2008 沙拉公主的困惑 数论

    题目大意:给定询问组数T和取模数P,每次询问给定两个整数n和m,求1~(n!)的数中与m!互质的数个个数模P (m<=n) 首先T<=1W,暴力肯定过不去,我们须要预处理一些东西 首先我们 ...

  10. 【BZOJ2186】沙拉公主的困惑(数论)

    [BZOJ2186]沙拉公主的困惑(数论) 题面 BZOJ 题解 考虑答案是啥 先假设\(n=m\) 现在求的就是\(\varphi(m!)\) 但是现在\(n!\)是\(m!\)的若干倍 我们知道 ...

随机推荐

  1. Shell编程基础教程3--Shell输入与输出

    3.Shell输入与输出    3.1.echo        echo命令可以显示文本行或变量,或者把字符串输出到文件        echo [option] string             ...

  2. 使用Mybatis-Generator自动生成Dao、Model、Mapping相关文件(转)

    Mybatis属于半自动ORM,在使用这个框架中,工作量最大的就是书写Mapping的映射文件,由于手动书写很容易出错,我们可以利用Mybatis-Generator来帮我们自动生成文件. 1.相关文 ...

  3. 解决postgresql -- ERROR: 42601: query has no destination for result data

    I am learning Npgsql and PostgreSQL. I am unable to define the output parameter correctly. What am I ...

  4. VS2013 当前不会命中断点,还没有为该文档加载任何符号

    方法一: 把ie的 调试 打开,然后调试的时候 会问你 是在新示例中打开 还是 当前示例,你选择当前的就行了.还有 建议你用 ie8.0的 开发者工具 调试  非常舒服 我已经 早就不用debuger ...

  5. 攻城狮在路上(叁)Linux(二十二)--- linux磁盘挂载与卸载 mount umount

    挂载就是将文件系统与目录结合的操作.挂载点就是目录,该目录就是进入分区或文件系统的入口. 一.挂载前的注意事项: 1.单一文件系统不应该被重复挂载在不同的挂载点中. 2.单一目录不应该重复挂载多个文件 ...

  6. PHP利用jquery生成各种验证码和Ajax验证

    PHP生成验证码图片 PHP生成验证码的原理:使用PHP的GD库,生成一张带验证码的图片,并将验证码保存在Session中.PHP 生成验证码的大致流程有: .产生一张png的图片: .为图片设置背景 ...

  7. Java后端WebSocket的Tomcat实现

    转自:http://blog.chenzuhuang.com/archive/28.html 文章摘要随着互联网的发展,传统的HTTP协议已经很难满足Web应用日益复杂的需求了.近年来,随着HTML5 ...

  8. 10gRAC运行srvctl报错error while loading shared libraries:

    数据库10g才会有这个错,因为11g的grid和oracle是分开的. [oracle@news01 orcl]$ srvctl /u01/app/oracle/db_1/jdk/jre/bin/ja ...

  9. 装饰模式/decorator模式/结构型模式

    装饰模式Decorator 定义 为对象动态的增加新的功能,实现要求装饰对象和被装饰对象实现同一接口或抽象类,装饰对象持有被装饰对象的实例. java实现要点 定义一个接口或抽象类,作为被装饰者的抽象 ...

  10. AngularJS $http

    $http 是 AngularJS 中的一个核心服务,用于读取远程服务器的数据.在服务器上读取数据: <div ng-app="myApp" ng-controller=&q ...