Description

学过图论的同学都知道最小割的概念:对于一个图,某个对图中结点的划分将图中所有结点分成
两个部分,如果结点s,t不在同一个部分中,则称这个划分是关于s,t的割。对于带权图来说,将
所有顶点处在不同部分的边的权值相加所得到的值定义为这个割的容量,而s,t的最小割指的是在
关于s,t的割中容量最小的割。
而对冲刺NOI竞赛的选手而言,求带权图中两点的最小割已经不是什么难事了。我们可以把
视野放宽,考虑有N个点的无向连通图中所有点对的最小割的容量,共能得到N(N−1)
2个数值。
这些数值中互不相同的有多少个呢?这似乎是个有趣的问题。
 

Input

输入文件第一行包含两个数N,M,表示点数和边数。接下来M行,每行三个数u,v,w,
表示点u和点v(从1开始标号)之间有条边权值是w。
1<=N<=850 1<=M<=8500 1<=W<=100000
 

Output

输出文件第一行为一个整数,表示个数。

 

Sample Input

4 4
1 2 3
1 3 6
2 4 5
3 4 4

Sample Output

3
 
经典的分治最小割问题,有这样一个结论:最小割最多有n-1个,这n-1个最小割构成一个最小割树(可见2016国家队论文)
大意是每次任取一个源汇求出最小割,然后分治S割和T割的节点,时间复杂度为N*O(最小割)。
#include<cstdio>
#include<cctype>
#include<queue>
#include<cstring>
#include<algorithm>
#define rep(i,s,t) for(int i=s;i<=t;i++)
#define dwn(i,s,t) for(int i=s;i>=t;i--)
#define ren for(int i=first[x];i!=-1;i=next[i])
using namespace std;
const int BufferSize=1<<16;
char buffer[BufferSize],*head,*tail;
inline char Getchar() {
if(head==tail) {
int l=fread(buffer,1,BufferSize,stdin);
tail=(head=buffer)+l;
}
return *head++;
}
inline int read() {
int x=0,f=1;char c=getchar();
for(;!isdigit(c);c=getchar()) if(c=='-') f=-1;
for(;isdigit(c);c=getchar()) x=x*10+c-'0';
return x*f;
}
const int maxn=910;
const int maxm=20010;
struct Dinic {
struct Edge {int from,to,flow;}edges[maxm];
int n,m,s,t,first[maxn],next[maxm];
int d[maxn],vis[maxn],cur[maxn];
void init(int n) {
this->n=n;m=0;
memset(first,-1,sizeof(first));
}
void AddEdge(int u,int v,int w) {
edges[m]=(Edge){u,v,w};next[m]=first[u];first[u]=m++;
edges[m]=(Edge){v,u,w};next[m]=first[v];first[v]=m++;
}
void reset() {rep(i,0,m-1) edges[i].flow=edges[i^1].flow=(edges[i].flow+edges[i^1].flow)>>1;}
int Q[maxn],clo;
int BFS() {
int l=1,r=0;Q[++r]=s;vis[s]=++clo;
while(l<=r) {
int x=Q[l++];cur[x]=first[x];
ren {
Edge& e=edges[i];
if(e.flow&&vis[e.to]!=clo) {
vis[e.to]=clo;
d[e.to]=d[x]+1;
Q[++r]=e.to;
}
}
}
return vis[t]==clo;
}
int DFS(int x,int a) {
if(x==t||!a) return a;
int flow=0,f;
for(int& i=cur[x];i!=-1;i=next[i]) {
Edge& e=edges[i];
if(d[e.to]==d[x]+1&&(f=DFS(e.to,min(a,e.flow)))) {
e.flow-=f;edges[i^1].flow+=f;
flow+=f;a-=f;if(!a) break;
}
}
return flow;
}
int solve(int s,int t) {
this->s=s;this->t=t;int flow=0;
while(BFS()) flow+=DFS(s,1e9);
return flow;
}
}sol;
int cnt,A[maxn],tmp[maxn],ans[maxm];
void solve(int l,int r) {
if(l>=r) return;sol.reset();
ans[++cnt]=sol.solve(A[l],A[r]);
int L=l,R=r;
rep(i,l,r) {
if(sol.vis[A[i]]==sol.clo) tmp[L++]=A[i];
else tmp[R--]=A[i];
}
rep(i,l,r) A[i]=tmp[i];
solve(l,R);solve(L,r);
}
int main() {
int n=read(),m=read();sol.init(n);
rep(i,1,m) {
int a=read(),b=read(),c=read();
sol.AddEdge(a,b,c);
}
rep(i,1,n) A[i]=i;solve(1,n);
sort(ans+1,ans+cnt+1);
int res=1;
rep(i,2,cnt) if(ans[i]!=ans[i-1]) res++;
printf("%d\n",res);
return 0;
}

  

BZOJ4519: [Cqoi2016]不同的最小割的更多相关文章

  1. bzoj千题计划140:bzoj4519: [Cqoi2016]不同的最小割

    http://www.lydsy.com/JudgeOnline/problem.php?id=4519 最小割树 #include<queue> #include<cstdio&g ...

  2. bzoj4519: [Cqoi2016]不同的最小割(分治最小割)

    4519: [Cqoi2016]不同的最小割 题目:传送门 题解: 同BZOJ 2229 基本一样的题目啊,就最后用set记录一下就ok 代码: #include<cstdio> #inc ...

  3. [bzoj4519][Cqoi2016]不同的最小割_网络流_最小割_最小割树

    不同的最小割 bzoj-4519 Cqoi-2016 题目大意:题目链接. 注释:略. 想法: 我们发现这和最小割那题比较像. 我们依然通过那个题说的办法一样,构建最小割树即可. 接下来就是随便怎么处 ...

  4. BZOJ4519 CQOI2016不同的最小割(最小割+分治)

    最小割树:新建一个图,包含原图的所有点,初始没有边.任取两点跑最小割,给两点连上权值为最小割的边,之后对于两个割集分别做同样的操作.最后会形成一棵树,树上两点间路径的最小值即为两点最小割.证明一点都不 ...

  5. BZOJ4519——[cqoi2016]不同的最小割

    0.题意:求两点之间的最小割的不同的总量 1.分析:裸的分治+最小割,也叫最小割树或GH树,最后用set搞一下就好 #include <set> #include <queue> ...

  6. BZOJ4519[Cqoi2016]不同的最小割——最小割树+map

    题目描述 学过图论的同学都知道最小割的概念:对于一个图,某个对图中结点的划分将图中所有结点分成 两个部分,如果结点s,t不在同一个部分中,则称这个划分是关于s,t的割.对于带权图来说,将 所有顶点处在 ...

  7. bzoj4519: [Cqoi2016]不同的最小割(最小割树)

    传送门 好神仙……最小割树是个什么东西…… 其实我觉得干脆直接$O(n^2)$跑几个dinic算了…… 来说一下这个叫最小割树的神奇东西 我们先建一个$n$个点,没有边的无向图 在原图中任选两点$s, ...

  8. 【BZOJ4519】[Cqoi2016]不同的最小割 最小割树

    [BZOJ4519][Cqoi2016]不同的最小割 Description 学过图论的同学都知道最小割的概念:对于一个图,某个对图中结点的划分将图中所有结点分成两个部分,如果结点s,t不在同一个部分 ...

  9. 【BZOJ-4519】不同的最小割 最小割树(分治+最小割)

    4519: [Cqoi2016]不同的最小割 Time Limit: 20 Sec  Memory Limit: 512 MBSubmit: 393  Solved: 239[Submit][Stat ...

随机推荐

  1. poj 3278:Catch That Cow(简单一维广搜)

    Catch That Cow Time Limit: 2000MS   Memory Limit: 65536K Total Submissions: 45648   Accepted: 14310 ...

  2. 【openGL】画正弦函数图像

    #include "stdafx.h" #include <GL/glut.h> #include <stdlib.h> #include <math ...

  3. RAC NTP/CTSS

    本文總結主要參考: http://blog.itpub.net/23135684/viewspace-759693/ http://www.happyworld.net.cn/post/6.html ...

  4. golang channel basic

    package mainimport ( "fmt" "math/rand" "time")func main() { rand.Seed( ...

  5. Mysql常用命令详解

    Mysql安装目录 数据库目录 /var/lib/mysql/ 配置文件 /usr/share/mysql(mysql.server命令及配置文件) 相关命令 /usr/bin(mysqladmin ...

  6. Android开发如何去除标题栏title(转)

    去除标题栏title其实非常简单,他有两种方法,一种是在代码中添加,另一种是在AndroidManifest.xml中添加: 1.在代码中实现:在此方法setContentView(R.layout. ...

  7. 在Salesforce中编写Unit Test

    Unit Test 也是一个 Class 文件,所以在创建 Unit Test 的时候要选择 Test Class 类型来创建,请看如下截图(在Eclipse中): 编写 Unit Test 基本流程 ...

  8. Codeforces Round #161 (Div. 2) D. Cycle in Graph(无向图中找指定长度的简单环)

    题目链接:http://codeforces.com/problemset/problem/263/D 思路:一遍dfs即可,dp[u]表示当前遍历到节点u的长度,对于节点u的邻接点v,如果v没有被访 ...

  9. MATLAB中stem函数用法

    stem(Y) 将数据序列Y从x轴到数据值按照茎状形式画出,以圆圈终止.如果Y是一个矩阵,则将其每一列按照分隔方式画出. stem(X,Y)在X的指定点处画出数据序列Y.  stem(...,'fil ...

  10. zookeeper源码分析二FASTLEADER选举算法

    如何在zookeeper集群中选举出一个leader,zookeeper使用了三种算法,具体使用哪种算法,在配置文件中是可以配置的,对应的配置项是"electionAlg",其中1 ...