基本概率分布Basic Concept of Probability Distributions 6: Exponential Distribution
PDF & CDF
The exponential probability density function (PDF) is $$f(x; \lambda) = \begin{cases}\lambda e^{-\lambda x} & x\geq0\\ 0 & x < 0 \end{cases}$$ The exponential cumulative distribution function (CDF) is $$F(x; \lambda) = \begin{cases}1 - e^{-\lambda x} & x\geq0\\ 0 & x < 0 \end{cases}$$
Proof:
$$ \begin{align*} F(x; \lambda) &= \int_{0}^{x}f(x; \lambda)\ dx\\ &= \int_{0}^{x}\lambda e^{-\lambda x}\ dx \\ &= \lambda\cdot\left(-{1\over\lambda}\right)\int_{0}^{x}e^{-\lambda x}\ d(-\lambda x)\\ &= -e^{-\lambda x}\Big|_{0}^{x}\\ &= 1 - e^{-\lambda x} \end{align*} $$ And $$F(\infty) = 1$$
Mean
The expected value is $$\mu = E[X] = {1\over\lambda}$$
Proof:
$$ \begin{align*} E\left[X^k\right] &= \int_{0}^{\infty}x^kf(x; \lambda)\ dx\\ &= \int_{0}^{\infty}x^k\lambda e^{-\lambda x}\ dx\\ &= -x^ke^{-\lambda x}\Big|_{0}^{\infty} + \int_{0}^{\infty}e^{-\lambda x}kx^{k-1}\ dx\quad\quad\quad\quad(\mbox{integrating by parts})\\ &= 0 + {k\over \lambda}\int_{0}^{\infty}x^{k-1}\lambda e^{-\lambda x}\ dx\\ &= {k\over\lambda}E\left[X^{k-1}\right] \end{align*} $$ Using the integrating by parts: $$u= x^k\Rightarrow du = kx^{k-1}\ dx,\ dv = \lambda e^{-\lambda x}\Rightarrow v = \int\lambda e^{-\lambda x}\ dx = -e^{-\lambda x}$$ $$\implies \int x^k\lambda e^{-\lambda x}\ dx =uv - \int vdu = -x^ke^{-\lambda x} + \int e^{-\lambda x}kx^{k-1}\ dx$$ Hence setting $k=1$: $$E[X]= {1\over\lambda}$$
Variance
The variance is $$\sigma^2 = \mbox{Var}(X) = {1\over\lambda^2}$$
Proof:
$$ \begin{align*} E\left[X^2\right] &= {2\over\lambda} E[X] \quad\quad \quad\quad (\mbox{setting}\ k=2)\\ &= {2\over\lambda^2} \end{align*} $$ Hence $$ \begin{align*} \mbox{Var}(X) &= E\left[X^2\right] - E[X]^2\\ &= {2\over\lambda^2} - {1\over\lambda^2}\\ &= {1\over\lambda^2} \end{align*} $$
Examples
1. Let $X$ be exponentially distributed with intensity $\lambda$. Determine the expected value $\mu$, the standard deviation $\sigma$, and the probability $P\left(|X-\mu| \geq 2\sigma\right)$. Compare with Chebyshev's Inequality.
Solution:
$$\mu = {1\over\lambda},\ \sigma = {1\over\lambda}$$ The probability that $X$ takes a value more than two standard deviations from $\mu$ is $$ \begin{align*} P\left(|X - \mu| \geq 2\sigma\right) &= P\left(X \geq {3\over \lambda} \right)\\ &= 1-F\left({3\over\lambda}\right)\\ &= e^{-3}= 0.04978707 \end{align*} $$ Chebyshev's Inequality gives the weaker estimation $$P\left(|X - \mu| \geq 2\sigma\right) \leq {1\over4} = 0.25$$
2. Suppose that the length of a phone call in minutes is an exponential random variable with parameter $\lambda = {1\over10}$. If someone arrives immediately ahead of you at a public telephone booth, find the probability that you will have to wait (a) more than 10 minutes; (b) between 10 and 20 minutes.
Solution:
Let $X$ be the length of the call made by the person in the booth. And $$f(x) = {1\over10}e^{-{1\over10}x},\ F(x) = 1-e^{-{1\over10}x}$$ (a) $$ \begin{align*} P( X > 10) &= 1 - P(X \leq 10)\\ &= 1 - F(10)\\ &= e^{-1}= 0.3678794 \end{align*} $$ (b) $$ \begin{align*} P(10 < X < 20) &= P(X < 20) - P(X < 10)\\ &= F(20) - F(10)\\ &= (1-e^{-2}) - (1 - e^{-1})\\ &= e^{-1} - e^{-2} = 0.2325442 \end{align*} $$
Reference
- Ross, S. (2010). A First Course in Probability (8th Edition). Chapter 5. Pearson. ISBN: 978-0-13-603313-4.
- Brink, D. (2010). Essentials of Statistics: Exercises. Chapter 5. ISBN: 978-87-7681-409-0.
基本概率分布Basic Concept of Probability Distributions 6: Exponential Distribution的更多相关文章
- 基本概率分布Basic Concept of Probability Distributions 8: Normal Distribution
PDF version PDF & CDF The probability density function is $$f(x; \mu, \sigma) = {1\over\sqrt{2\p ...
- 基本概率分布Basic Concept of Probability Distributions 7: Uniform Distribution
PDF version PDF & CDF The probability density function of the uniform distribution is $$f(x; \al ...
- 基本概率分布Basic Concept of Probability Distributions 5: Hypergemometric Distribution
PDF version PMF Suppose that a sample of size $n$ is to be chosen randomly (without replacement) fro ...
- 基本概率分布Basic Concept of Probability Distributions 3: Geometric Distribution
PDF version PMF Suppose that independent trials, each having a probability $p$, $0 < p < 1$, o ...
- 基本概率分布Basic Concept of Probability Distributions 2: Poisson Distribution
PDF version PMF A discrete random variable $X$ is said to have a Poisson distribution with parameter ...
- 基本概率分布Basic Concept of Probability Distributions 1: Binomial Distribution
PDF下载链接 PMF If the random variable $X$ follows the binomial distribution with parameters $n$ and $p$ ...
- 基本概率分布Basic Concept of Probability Distributions 4: Negative Binomial Distribution
PDF version PMF Suppose there is a sequence of independent Bernoulli trials, each trial having two p ...
- PRML Chapter 2. Probability Distributions
PRML Chapter 2. Probability Distributions P68 conjugate priors In Bayesian probability theory, if th ...
- Common Probability Distributions
Common Probability Distributions Probability Distribution A probability distribution describes the p ...
随机推荐
- SUBLIME TEXT 2中,光标移入移出括号的快捷键设置
无赖右方向键→和End键都在键盘的另一边,每次输入完一个函数,光标在各种括号中间,有什么更好的方式将光标移出来呢?在Sublime Text 2中,我们可以自己设置快捷键: { "keys& ...
- idea配置。
1.project Structure — 修改project(1.name,sdk,level(6-@Override in interface)) 修改modules(点击web,加上source ...
- 学堂在线 UWP 首版
好久没有写博客了,主要是最近在写一个小小的App.<( ̄︶ ̄)> 不知道看各位有木有爱看慕课的,作为一名资深的大三学渣的我有看慕课的习惯.一直在看学堂在线的慕课,感觉质量确实还可以,但是遗 ...
- Linux下网络流量实时监控工具
Linux下网络流量实时监控工具大全 在工作中发现,经常因为业务的原因,需要即时了解某台服务器网卡的流量,虽然公司也部署了cacti软件,但cacti是五分钟统计的,没有即时性,并且有时候打开监控页面 ...
- [BZOJ3714][PA2014]Kuglarz(MST)
题目: Description 魔术师的桌子上有n个杯子排成一行,编号为1,2,…,n,其中某些杯子底下藏有一个小球,如果你准确地猜出是哪些杯子,你就可以获得奖品.花费c_ij元,魔术师就会告诉你杯子 ...
- NVIC优先级分组
挂起,解挂,使能,失能
- Adaboost 算法的原理与推导
0 引言 一直想写Adaboost来着,但迟迟未能动笔.其算法思想虽然简单“听取多人意见,最后综合决策”,但一般书上对其算法的流程描述实在是过于晦涩.昨日11月1日下午,邹博在我组织的机器学习班第8次 ...
- Position、Float
http://www.cnblogs.com/coffeedeveloper/p/3145790.html
- 消息队列写入内容后,读出来的自动包裹了<string>标签,自定义格式化器解决该issue
/// <summary> /// 该格式化器使输入即输出 /// </summary> public class StringFormatter : IMessageForm ...
- “Ceph浅析”系列之五——Ceph的工作原理及流程
本文将对Ceph的工作原理和若干关键工作流程进行扼要介绍.如前所述,由于Ceph的功能实现本质上依托于RADOS,因而,此处的介绍事实上也是针对RADOS进行.对于上层的部分,特别是RADOS GW和 ...