PDF version

PDF & CDF

The exponential probability density function (PDF) is $$f(x; \lambda) = \begin{cases}\lambda e^{-\lambda x} & x\geq0\\ 0 & x < 0 \end{cases}$$ The exponential cumulative distribution function (CDF) is $$F(x; \lambda) = \begin{cases}1 - e^{-\lambda x} & x\geq0\\ 0 & x < 0 \end{cases}$$

Proof:

$$ \begin{align*} F(x; \lambda) &= \int_{0}^{x}f(x; \lambda)\ dx\\ &= \int_{0}^{x}\lambda e^{-\lambda x}\ dx \\ &= \lambda\cdot\left(-{1\over\lambda}\right)\int_{0}^{x}e^{-\lambda x}\ d(-\lambda x)\\ &= -e^{-\lambda x}\Big|_{0}^{x}\\ &= 1 - e^{-\lambda x} \end{align*} $$ And $$F(\infty) = 1$$

Mean

The expected value is $$\mu = E[X] = {1\over\lambda}$$

Proof:

$$ \begin{align*} E\left[X^k\right] &= \int_{0}^{\infty}x^kf(x; \lambda)\ dx\\ &= \int_{0}^{\infty}x^k\lambda e^{-\lambda x}\ dx\\ &= -x^ke^{-\lambda x}\Big|_{0}^{\infty} + \int_{0}^{\infty}e^{-\lambda x}kx^{k-1}\ dx\quad\quad\quad\quad(\mbox{integrating by parts})\\ &= 0 + {k\over \lambda}\int_{0}^{\infty}x^{k-1}\lambda e^{-\lambda x}\ dx\\ &= {k\over\lambda}E\left[X^{k-1}\right] \end{align*} $$ Using the integrating by parts: $$u= x^k\Rightarrow du = kx^{k-1}\ dx,\ dv = \lambda e^{-\lambda x}\Rightarrow v = \int\lambda e^{-\lambda x}\ dx = -e^{-\lambda x}$$ $$\implies \int x^k\lambda e^{-\lambda x}\ dx =uv - \int vdu = -x^ke^{-\lambda x} + \int e^{-\lambda x}kx^{k-1}\ dx$$ Hence setting $k=1$: $$E[X]= {1\over\lambda}$$

Variance

The variance is $$\sigma^2 = \mbox{Var}(X) = {1\over\lambda^2}$$

Proof:

$$ \begin{align*} E\left[X^2\right] &= {2\over\lambda} E[X] \quad\quad \quad\quad (\mbox{setting}\ k=2)\\ &= {2\over\lambda^2} \end{align*} $$ Hence $$ \begin{align*} \mbox{Var}(X) &= E\left[X^2\right] - E[X]^2\\ &= {2\over\lambda^2} - {1\over\lambda^2}\\ &= {1\over\lambda^2} \end{align*} $$

Examples

1. Let $X$ be exponentially distributed with intensity $\lambda$. Determine the expected value $\mu$, the standard deviation $\sigma$, and the probability $P\left(|X-\mu| \geq 2\sigma\right)$. Compare with Chebyshev's Inequality.

Solution:

$$\mu = {1\over\lambda},\ \sigma = {1\over\lambda}$$ The probability that $X$ takes a value more than two standard deviations from $\mu$ is $$ \begin{align*} P\left(|X - \mu| \geq 2\sigma\right) &= P\left(X \geq {3\over \lambda} \right)\\ &= 1-F\left({3\over\lambda}\right)\\ &= e^{-3}= 0.04978707 \end{align*} $$ Chebyshev's Inequality gives the weaker estimation $$P\left(|X - \mu| \geq 2\sigma\right) \leq {1\over4} = 0.25$$

2. Suppose that the length of a phone call in minutes is an exponential random variable with parameter $\lambda = {1\over10}$. If someone arrives immediately ahead of you at a public telephone booth, find the probability that you will have to wait (a) more than 10 minutes; (b) between 10 and 20 minutes.

Solution:

Let $X$ be the length of the call made by the person in the booth. And $$f(x) = {1\over10}e^{-{1\over10}x},\ F(x) = 1-e^{-{1\over10}x}$$ (a) $$ \begin{align*} P( X > 10) &= 1 - P(X \leq 10)\\ &= 1 - F(10)\\ &= e^{-1}= 0.3678794 \end{align*} $$ (b) $$ \begin{align*} P(10 < X < 20) &= P(X < 20) - P(X < 10)\\ &= F(20) - F(10)\\ &= (1-e^{-2}) - (1 - e^{-1})\\ &= e^{-1} - e^{-2} = 0.2325442 \end{align*} $$

Reference

  1. Ross, S. (2010). A First Course in Probability (8th Edition). Chapter 5. Pearson. ISBN: 978-0-13-603313-4.
  2. Brink, D. (2010). Essentials of Statistics: Exercises. Chapter 5. ISBN: 978-87-7681-409-0.

基本概率分布Basic Concept of Probability Distributions 6: Exponential Distribution的更多相关文章

  1. 基本概率分布Basic Concept of Probability Distributions 8: Normal Distribution

    PDF version PDF & CDF The probability density function is $$f(x; \mu, \sigma) = {1\over\sqrt{2\p ...

  2. 基本概率分布Basic Concept of Probability Distributions 7: Uniform Distribution

    PDF version PDF & CDF The probability density function of the uniform distribution is $$f(x; \al ...

  3. 基本概率分布Basic Concept of Probability Distributions 5: Hypergemometric Distribution

    PDF version PMF Suppose that a sample of size $n$ is to be chosen randomly (without replacement) fro ...

  4. 基本概率分布Basic Concept of Probability Distributions 3: Geometric Distribution

    PDF version PMF Suppose that independent trials, each having a probability $p$, $0 < p < 1$, o ...

  5. 基本概率分布Basic Concept of Probability Distributions 2: Poisson Distribution

    PDF version PMF A discrete random variable $X$ is said to have a Poisson distribution with parameter ...

  6. 基本概率分布Basic Concept of Probability Distributions 1: Binomial Distribution

    PDF下载链接 PMF If the random variable $X$ follows the binomial distribution with parameters $n$ and $p$ ...

  7. 基本概率分布Basic Concept of Probability Distributions 4: Negative Binomial Distribution

    PDF version PMF Suppose there is a sequence of independent Bernoulli trials, each trial having two p ...

  8. PRML Chapter 2. Probability Distributions

    PRML Chapter 2. Probability Distributions P68 conjugate priors In Bayesian probability theory, if th ...

  9. Common Probability Distributions

    Common Probability Distributions Probability Distribution A probability distribution describes the p ...

随机推荐

  1. 打印机设置(PrintDialog)、页面设置(PageSetupDialog) 及 RDLC报表如何选择指定打印机

    如果一台电脑同时连接多个打印机,而且每个打印机使用的纸张大小各不相同(比如:票据打印钱用的小票专用张,办公打印机用的是A4标准纸),在处理打印类的需求时,如果不用代码干预,用户必须每次打印时,都必须在 ...

  2. Intel pin 2.14/CentOS 6 X86-64/安装

    环境:Intel Pin 2.14 CentOS 6 X86-64 --linux.tar.gz 进入 ./source/tools/ManualExamples make all TARGET=in ...

  3. 工作随笔——mysql子查询删除原表数据

    最近在开发的时候遇到一个mysql的子查询删除原表数据的问题.在网上也看了很多方法,基本也是然并卵(不是写的太乱就是效率太慢). 公司DBA给了一个很好的解决方案,让人耳目一新. DELETE fb. ...

  4. LINQ基础概述

    介绍LINQ基础之前,首说一下LINQ 的历史和LINQ是什么,然后说一下学习 LINQ要了解的东西和 LINQ基础语法   LINQ 的历史 从语言方面的进化 –委托 –匿名方法 –Lambda表达 ...

  5. web 前端常用组件【01】Pagination 分页

    分页组件几乎是一般网站都会涉及到的组件,网上有很多这样的插件,自己挑来跳去选择了这一款. 官方Demo网址:http://mricle.com/JqueryPagination 功能强大,可扩展性比较 ...

  6. SVN——配置和安装

    SVN安装步骤: 所有安装文件下载地址:http://pan.baidu.com/s/1bocNTDl 一.安装01----VisualSVN-Server-3.4.2-x64.msi 文件 直接下一 ...

  7. poj 1698 Alice‘s Chance

    poj 1698  Alice's Chance 题目地址: http://poj.org/problem?id=1698 题意: 演员Alice ,面对n场电影,每场电影拍摄持续w周,每周特定几天拍 ...

  8. jquery+bootstrap使用数字增减按钮

    <div class="container"> <div class="page-header"><h1>Bootstrap ...

  9. 迷你DVD管理器

    import java.text.*; import java.util.*; class DVDSet { String[] name=new String[50]; //定义一个DVD数组 boo ...

  10. if..elif语句

    根据用户输入内容打印其权限 # alex --> 超级管理员 # eric --> 普通管理员 # tony,rain --> 业务主管 # 其他 --> 普通用户 name ...