PDF version

PDF & CDF

The exponential probability density function (PDF) is $$f(x; \lambda) = \begin{cases}\lambda e^{-\lambda x} & x\geq0\\ 0 & x < 0 \end{cases}$$ The exponential cumulative distribution function (CDF) is $$F(x; \lambda) = \begin{cases}1 - e^{-\lambda x} & x\geq0\\ 0 & x < 0 \end{cases}$$

Proof:

$$ \begin{align*} F(x; \lambda) &= \int_{0}^{x}f(x; \lambda)\ dx\\ &= \int_{0}^{x}\lambda e^{-\lambda x}\ dx \\ &= \lambda\cdot\left(-{1\over\lambda}\right)\int_{0}^{x}e^{-\lambda x}\ d(-\lambda x)\\ &= -e^{-\lambda x}\Big|_{0}^{x}\\ &= 1 - e^{-\lambda x} \end{align*} $$ And $$F(\infty) = 1$$

Mean

The expected value is $$\mu = E[X] = {1\over\lambda}$$

Proof:

$$ \begin{align*} E\left[X^k\right] &= \int_{0}^{\infty}x^kf(x; \lambda)\ dx\\ &= \int_{0}^{\infty}x^k\lambda e^{-\lambda x}\ dx\\ &= -x^ke^{-\lambda x}\Big|_{0}^{\infty} + \int_{0}^{\infty}e^{-\lambda x}kx^{k-1}\ dx\quad\quad\quad\quad(\mbox{integrating by parts})\\ &= 0 + {k\over \lambda}\int_{0}^{\infty}x^{k-1}\lambda e^{-\lambda x}\ dx\\ &= {k\over\lambda}E\left[X^{k-1}\right] \end{align*} $$ Using the integrating by parts: $$u= x^k\Rightarrow du = kx^{k-1}\ dx,\ dv = \lambda e^{-\lambda x}\Rightarrow v = \int\lambda e^{-\lambda x}\ dx = -e^{-\lambda x}$$ $$\implies \int x^k\lambda e^{-\lambda x}\ dx =uv - \int vdu = -x^ke^{-\lambda x} + \int e^{-\lambda x}kx^{k-1}\ dx$$ Hence setting $k=1$: $$E[X]= {1\over\lambda}$$

Variance

The variance is $$\sigma^2 = \mbox{Var}(X) = {1\over\lambda^2}$$

Proof:

$$ \begin{align*} E\left[X^2\right] &= {2\over\lambda} E[X] \quad\quad \quad\quad (\mbox{setting}\ k=2)\\ &= {2\over\lambda^2} \end{align*} $$ Hence $$ \begin{align*} \mbox{Var}(X) &= E\left[X^2\right] - E[X]^2\\ &= {2\over\lambda^2} - {1\over\lambda^2}\\ &= {1\over\lambda^2} \end{align*} $$

Examples

1. Let $X$ be exponentially distributed with intensity $\lambda$. Determine the expected value $\mu$, the standard deviation $\sigma$, and the probability $P\left(|X-\mu| \geq 2\sigma\right)$. Compare with Chebyshev's Inequality.

Solution:

$$\mu = {1\over\lambda},\ \sigma = {1\over\lambda}$$ The probability that $X$ takes a value more than two standard deviations from $\mu$ is $$ \begin{align*} P\left(|X - \mu| \geq 2\sigma\right) &= P\left(X \geq {3\over \lambda} \right)\\ &= 1-F\left({3\over\lambda}\right)\\ &= e^{-3}= 0.04978707 \end{align*} $$ Chebyshev's Inequality gives the weaker estimation $$P\left(|X - \mu| \geq 2\sigma\right) \leq {1\over4} = 0.25$$

2. Suppose that the length of a phone call in minutes is an exponential random variable with parameter $\lambda = {1\over10}$. If someone arrives immediately ahead of you at a public telephone booth, find the probability that you will have to wait (a) more than 10 minutes; (b) between 10 and 20 minutes.

Solution:

Let $X$ be the length of the call made by the person in the booth. And $$f(x) = {1\over10}e^{-{1\over10}x},\ F(x) = 1-e^{-{1\over10}x}$$ (a) $$ \begin{align*} P( X > 10) &= 1 - P(X \leq 10)\\ &= 1 - F(10)\\ &= e^{-1}= 0.3678794 \end{align*} $$ (b) $$ \begin{align*} P(10 < X < 20) &= P(X < 20) - P(X < 10)\\ &= F(20) - F(10)\\ &= (1-e^{-2}) - (1 - e^{-1})\\ &= e^{-1} - e^{-2} = 0.2325442 \end{align*} $$

Reference

  1. Ross, S. (2010). A First Course in Probability (8th Edition). Chapter 5. Pearson. ISBN: 978-0-13-603313-4.
  2. Brink, D. (2010). Essentials of Statistics: Exercises. Chapter 5. ISBN: 978-87-7681-409-0.

基本概率分布Basic Concept of Probability Distributions 6: Exponential Distribution的更多相关文章

  1. 基本概率分布Basic Concept of Probability Distributions 8: Normal Distribution

    PDF version PDF & CDF The probability density function is $$f(x; \mu, \sigma) = {1\over\sqrt{2\p ...

  2. 基本概率分布Basic Concept of Probability Distributions 7: Uniform Distribution

    PDF version PDF & CDF The probability density function of the uniform distribution is $$f(x; \al ...

  3. 基本概率分布Basic Concept of Probability Distributions 5: Hypergemometric Distribution

    PDF version PMF Suppose that a sample of size $n$ is to be chosen randomly (without replacement) fro ...

  4. 基本概率分布Basic Concept of Probability Distributions 3: Geometric Distribution

    PDF version PMF Suppose that independent trials, each having a probability $p$, $0 < p < 1$, o ...

  5. 基本概率分布Basic Concept of Probability Distributions 2: Poisson Distribution

    PDF version PMF A discrete random variable $X$ is said to have a Poisson distribution with parameter ...

  6. 基本概率分布Basic Concept of Probability Distributions 1: Binomial Distribution

    PDF下载链接 PMF If the random variable $X$ follows the binomial distribution with parameters $n$ and $p$ ...

  7. 基本概率分布Basic Concept of Probability Distributions 4: Negative Binomial Distribution

    PDF version PMF Suppose there is a sequence of independent Bernoulli trials, each trial having two p ...

  8. PRML Chapter 2. Probability Distributions

    PRML Chapter 2. Probability Distributions P68 conjugate priors In Bayesian probability theory, if th ...

  9. Common Probability Distributions

    Common Probability Distributions Probability Distribution A probability distribution describes the p ...

随机推荐

  1. 基于SignalR的小型IM系统

    这个IM系统真是太轻量级了,提供的功能如下: 1.聊天内容美化 2.用户上下线提示 3.心跳包检测机制 4.加入用户可群聊 下面来一步一步的讲解具体的制作方法. 开篇准备工作 首先,巧妇难为无米之炊, ...

  2. 完全背包变型题(hdu5410)

    这是2015年最后一场多校的dp题,当时只怪自己基础太差,想了1个多小时才想出来,哎,9月份好好巩固基础,为区域赛做准备.题目传送门 题目的意思是给你n元钱,m类糖果,每类糖果分别有p, a, b, ...

  3. FineUI大版本升级,外置ExtJS库、去AXD化、表格合计行、表格可编辑单元格的增删改、顶部菜单框架

    这是一篇很长的文章,在开始正文之前,请允许我代表目前排名前 20 中唯一的 .Net 开源软件 FineUI 拉下选票: 投票地址: https://code.csdn.net/2013OSSurve ...

  4. Qt学习笔记 ListWidget的增删改

    学习了一下ListWidget控件的使用,做一个小功能增删改 先把代码分解最后给出完整代码 在窗体上添加一个ListWidget 一个Horizontal Specer和  三个PushButton ...

  5. 汤姆大叔的6道javascript编程题题解

    看汤姆大叔的博文,其中有篇(猛戳这里)的最后有6道编程题,于是我也试试,大家都可以先试试. 1.找出数字数组中最大的元素(使用Math.max函数) var a = [1, 2, 3, 6, 5, 4 ...

  6. 一个看似很简单的SQL却难倒了很多人

    一个选课表,有学生id,课程id,老师id,要求选出同时选了语文和数学的学生 USE [tempschool] GO /****** 对象: Table [dbo].[SelectC] 脚本日期: 0 ...

  7. Chrome 监听 console 打开

    这个算是 Chrome only 其他的我没测试,也不想测试.因为我的控制台脚本仅仅在 Chrome 下加载. 如果你需要全平台,那么这肯定不是你需要的结果. 需求 其实我很早就想折腾这个了,但是,, ...

  8. java并发:简单面试问题集锦

    多线程:Simultaneous Multithreading,简称SMT. 并行.并发 并行性(parallelism)指两个或两个以上的事件在同一时刻发生,在多道程序环境下,并行性使多个程序同一时 ...

  9. ASP.NET 系列:单元测试之SmtpClient

    使用SmtpClient发送Email时,我们可以创建ISmtpClient接口和SmtpClientWrapper适配类,在单元测试中对ISmtpClient进行Mock或自定义FackeSmtpC ...

  10. 微软分布式云计算框架Orleans(1):Hello World

    自从写了RabbitHub框架系列后的一段时间内一直在思索更加轻量简便,分布式高并发的框架(RabbitHub学习成本较高),无意间在网上级联看到了很多新框架:从helios到Akka.NET在到Or ...