加州大学伯克利分校Stat2.2x Probability 概率初步学习笔记: Section 1 The Two Fundamental Rules (1.5-1.6)
Stat2.2x Probability(概率)课程由加州大学伯克利分校(University of California, Berkeley)于2014年在edX平台讲授。
Summary
Bayes Theorem $$P(A_i|B)=\frac{P(B|A_i)\cdot P(A_i)}{\sum_{j}P(B|A_j)\cdot P(A_j)}$$ where $$P(B)=\sum_{j}P(B|A_j)\cdot P(A_j)$$
GRADED EXERCISE SET 2
PROBLEM 1
Cards are dealt from a well shuffled standard deck. Find the chance that:
1A the first card is not a heart
1B the 10th card is the ace of spades
1C the 10th card is the ace of spades, given that the 50th card is the ace of diamonds
1D the 32nd card is red, given that the 51st and 52nd cards are red
1E the 51st card is red, given that the 32nd and 52nd cards are red
Solution
1A) $$P(\text{first card is not heart})=1-P(\text{first card is heart})=1-\frac{13}{52}=\frac{3}{4}$$
1B) Each card is randomly drawn thus the chance of a specific card is equivalent: $$P(\text{10th is ace of spades})=\frac{1}{52}$$
1C) There are 51 cards except the given card ace of diamonds, thus $$P(\text{10th is ace of spades}\ |\ \text{50th is ace of diamonds})=\frac{1}{51}$$
1D) $$P(\text{32nd is red}\ |\ \text{51st and 52nd are red})=\frac{26-2}{52-2}=\frac{12}{25}$$
1E) $$P(\text{51st is red}\ |\ \text{32nd and 52nd are red})=\frac{26-2}{52-2}=\frac{12}{25}$$
PROBLEM 2
A person is selected at random from a population that has the following characteristics: 65% of the people are men; the others are women 12% of the men are smokers 7% of the women are smokers
2A Find (correct to four decimal places) the chance that the selected person is a non-smoker, given that the person is a man.
2B Find (correct to four decimal places) the chance that the selected person is a woman who smokes.
2C Find (correct to four decimal places) the chance that the selected person is a smoker.
2D Given that the selected person is a smoker, what is the chance that the person is a woman? Please give your answer correct to four decimal places.
2E Find (correct to four decimal places) the chance that the selected person is a man or a non-smoker.
Solution
2A) $$P(\text{non-smoker}\ |\ \text{man})=1-0.12=0.88$$
2B) $$P(\text{woman & smoker})=(1-0.65)\times0.07=0.0245$$
2C) $$P(\text{smoker})=P(\text{smoker & man})+P(\text{smoker & woman})$$ $$=0.65\times0.12+(1-0.65)\times0.07=0.1025$$
2D) $$P(\text{woman}\ |\ \text{smoker})=\frac{P(\text{woman & smoker})}{P(\text{smoker})}=\frac{0.35\times0.07}{0.1025}=0.2390244$$
2E) $$P(\text{man or non-smoker})=P(\text{man})+P(\text{non-smoker})-P(\text{man & non-smoker})$$ $$=0.65+(1-0.1025)-0.65\times0.88=0.9755$$
PROBLEM 3
I am with a group of five of my friends. A box contains 8 pieces each of milk chocolate, white chocolate, and dark chocolate. The box is passed around the six of us, with each person taking 4 pieces. Assume that each person chooses at random without replacement from the available pieces. I am the last person to whom the box is passed. Find the chance that I pick 4 dark chocolates.
Solution
It it no difference between "I" am the first and "I" am the last. $$P=\frac{C_{8}^{4}}{C_{24}^{4}}=\frac{35}{5313}=0.006587615$$ $C_{n}^{m}=\frac{n!}{m!\cdot(n-m)!}$ and its R function is $\text{choose(n, m)}$.
PROBLEM 4
An urn contains 10 white balls and 5 blue balls. Draws are made repeatedly from the urn as follows. On each draw, a ball is drawn and its color noted; then it is replaced in the urn along with 3 more balls of its color. For example, if you draw a white ball the first time, then you will put it back in the urn along with 3 more white balls. So you will end up with 13 white balls and 5 blue balls.
4A Find the chance that the first ball drawn is blue.
4B Find the chance that the second ball drawn is blue, given that the first ball drawn is blue.
4C Find the chance that the second ball drawn is blue.
4D Find the chance that the first ball drawn is blue, given that the second ball drawn is blue.
Solution
4A) $$P(\text{first is blue})=\frac{5}{10+5}=\frac{1}{3}$$
4B) If the first is blue then it would be 10 white balls and 8 blue balls before the second draw. Hence $$P(\text{second is blue}\ |\ \text{first is blue})=\frac{8}{10+8}=\frac{4}{9}$$
4C) $$P(\text{second is blue})=P(\text{second is blue & first is white})+P(\text{second is blue & first is blue})$$ $$=P(\text{first is white})\cdot P(\text{second is blue}\ |\ \text{first is white})$$ $$+P(\text{first is blue})\cdot P(\text{second is blue}\ |\ \text{first is blue})$$ $$=\frac{10}{15}\times\frac{5}{13+5}+\frac{5}{15}\times\frac{8}{10+8}=\frac{1}{3}$$
4D) $$P(\text{first is blue}\ |\ \text{second is blue})=\frac{P(\text{first & second are blue})}{P(\text{second is blue})}=\frac{\frac{5}{15}\times\frac{8}{10+8}}{\frac{1}{3}}=\frac{4}{9}$$
加州大学伯克利分校Stat2.2x Probability 概率初步学习笔记: Section 1 The Two Fundamental Rules (1.5-1.6)的更多相关文章
- 加州大学伯克利分校Stat2.2x Probability 概率初步学习笔记: Section 5 The accuracy of simple random samples
Stat2.2x Probability(概率)课程由加州大学伯克利分校(University of California, Berkeley)于2014年在edX平台讲授. PDF笔记下载(Acad ...
- 加州大学伯克利分校Stat2.2x Probability 概率初步学习笔记: Section 4 The Central Limit Theorem
Stat2.2x Probability(概率)课程由加州大学伯克利分校(University of California, Berkeley)于2014年在edX平台讲授. PDF笔记下载(Acad ...
- 加州大学伯克利分校Stat2.2x Probability 概率初步学习笔记: Section 3 The law of averages, and expected values
Stat2.2x Probability(概率)课程由加州大学伯克利分校(University of California, Berkeley)于2014年在edX平台讲授. PDF笔记下载(Acad ...
- 加州大学伯克利分校Stat2.2x Probability 概率初步学习笔记: Section 2 Random sampling with and without replacement
Stat2.2x Probability(概率)课程由加州大学伯克利分校(University of California, Berkeley)于2014年在edX平台讲授. PDF笔记下载(Acad ...
- 加州大学伯克利分校Stat2.2x Probability 概率初步学习笔记: Final
Stat2.2x Probability(概率)课程由加州大学伯克利分校(University of California, Berkeley)于2014年在edX平台讲授. PDF笔记下载(Acad ...
- 加州大学伯克利分校Stat2.2x Probability 概率初步学习笔记: Midterm
Stat2.2x Probability(概率)课程由加州大学伯克利分校(University of California, Berkeley)于2014年在edX平台讲授. PDF笔记下载(Acad ...
- 加州大学伯克利分校Stat2.3x Inference 统计推断学习笔记: FINAL
Stat2.3x Inference(统计推断)课程由加州大学伯克利分校(University of California, Berkeley)于2014年在edX平台讲授. PDF笔记下载(Acad ...
- 加州大学伯克利分校Stat2.3x Inference 统计推断学习笔记: Section 2 Testing Statistical Hypotheses
Stat2.3x Inference(统计推断)课程由加州大学伯克利分校(University of California, Berkeley)于2014年在edX平台讲授. PDF笔记下载(Acad ...
- 加州大学伯克利分校Stat2.3x Inference 统计推断学习笔记: Section 1 Estimating unknown parameters
Stat2.3x Inference(统计推断)课程由加州大学伯克利分校(University of California, Berkeley)于2014年在edX平台讲授. PDF笔记下载(Acad ...
随机推荐
- TinyFrame升级之三:逻辑访问部分
在上一篇,我们打造了自己的数据访问部分,这篇,我们准备讲解如何打造逻辑访问部分. 在上一篇中,我们利用Repository模式构建了基于泛型的操作合集.由于这些操作的合集都是原子性的操作,也就是针对单 ...
- 去除项目中的SVN标记
第一步:建立一个名字叫做remove-svn-folders.reg的文本(先建立txt文件,然后粘贴内容后再修改文件名字),记得后缀要叫.reg.文本的内容为: Windows Registry E ...
- Java应用程序项目的打包与发行(run.bat形式)
参考: http://www.iteye.com/topic/57312 背景: 以前一直都是在eclipse上面创建应用程序,每次要要运行的时候都要打开eclipse, 直到有个同事叫我帮忙写一个应 ...
- Redis Sentinel:集群Failover解决方案(转载)
本文转载自:http://shift-alt-ctrl.iteye.com/blog/1884370 文中的配置例子,还有failover过程中触发的订阅事件具有很好的参考价值. Redis sent ...
- TF2ZP函数
TF2ZP 中TF是什么意思? Transfer function tf 就是传递函数的意思,简称传函 tf2zp是将传递函数转换为零极点形式的一个转换函数 [Z,P,K] = TF2ZP ...
- 东大OJ-1588: Routing Table
题目描述 In the computer network, a Router is a device which finds an optimal way to transmit the datagr ...
- why does turn off button means hibernate on my win8
when I upgrated my laptop's system to win8.*,I found it's hibernate when I clicked turn off button. ...
- 由Nullable模式想到的ToString的扩展
虽然关于null的一切争论永不停息,但根据实际开发经历,很多时候需要判断无聊的null,并且有些的判断是可有可无的,尤其是在表现层. string e = null; if (e != null) { ...
- 1103简单SQL 行转列思路
转自http://www.cnblogs.com/lhj588/p/3315876.html -- 经典行列转化DROP TABLE IF EXISTS TabName;CREATE TABLE Ta ...
- RabbitMQ 发布/订阅
我们会做一些改变,就是把一个消息发给多个消费者,这种模式称之为发布/订阅(类似观察者模式). 为了验证这种模式,我们准备构建一个简单的日志系统.这个系统包含两类程序,一类程序发动日志,另一类程序接收和 ...