加州大学伯克利分校Stat2.2x Probability 概率初步学习笔记: Section 1 The Two Fundamental Rules (1.5-1.6)
Stat2.2x Probability(概率)课程由加州大学伯克利分校(University of California, Berkeley)于2014年在edX平台讲授。
Summary
Bayes Theorem $$P(A_i|B)=\frac{P(B|A_i)\cdot P(A_i)}{\sum_{j}P(B|A_j)\cdot P(A_j)}$$ where $$P(B)=\sum_{j}P(B|A_j)\cdot P(A_j)$$
GRADED EXERCISE SET 2
PROBLEM 1
Cards are dealt from a well shuffled standard deck. Find the chance that:
1A the first card is not a heart
1B the 10th card is the ace of spades
1C the 10th card is the ace of spades, given that the 50th card is the ace of diamonds
1D the 32nd card is red, given that the 51st and 52nd cards are red
1E the 51st card is red, given that the 32nd and 52nd cards are red
Solution
1A) $$P(\text{first card is not heart})=1-P(\text{first card is heart})=1-\frac{13}{52}=\frac{3}{4}$$
1B) Each card is randomly drawn thus the chance of a specific card is equivalent: $$P(\text{10th is ace of spades})=\frac{1}{52}$$
1C) There are 51 cards except the given card ace of diamonds, thus $$P(\text{10th is ace of spades}\ |\ \text{50th is ace of diamonds})=\frac{1}{51}$$
1D) $$P(\text{32nd is red}\ |\ \text{51st and 52nd are red})=\frac{26-2}{52-2}=\frac{12}{25}$$
1E) $$P(\text{51st is red}\ |\ \text{32nd and 52nd are red})=\frac{26-2}{52-2}=\frac{12}{25}$$
PROBLEM 2
A person is selected at random from a population that has the following characteristics: 65% of the people are men; the others are women 12% of the men are smokers 7% of the women are smokers
2A Find (correct to four decimal places) the chance that the selected person is a non-smoker, given that the person is a man.
2B Find (correct to four decimal places) the chance that the selected person is a woman who smokes.
2C Find (correct to four decimal places) the chance that the selected person is a smoker.
2D Given that the selected person is a smoker, what is the chance that the person is a woman? Please give your answer correct to four decimal places.
2E Find (correct to four decimal places) the chance that the selected person is a man or a non-smoker.
Solution
2A) $$P(\text{non-smoker}\ |\ \text{man})=1-0.12=0.88$$
2B) $$P(\text{woman & smoker})=(1-0.65)\times0.07=0.0245$$
2C) $$P(\text{smoker})=P(\text{smoker & man})+P(\text{smoker & woman})$$ $$=0.65\times0.12+(1-0.65)\times0.07=0.1025$$
2D) $$P(\text{woman}\ |\ \text{smoker})=\frac{P(\text{woman & smoker})}{P(\text{smoker})}=\frac{0.35\times0.07}{0.1025}=0.2390244$$
2E) $$P(\text{man or non-smoker})=P(\text{man})+P(\text{non-smoker})-P(\text{man & non-smoker})$$ $$=0.65+(1-0.1025)-0.65\times0.88=0.9755$$
PROBLEM 3
I am with a group of five of my friends. A box contains 8 pieces each of milk chocolate, white chocolate, and dark chocolate. The box is passed around the six of us, with each person taking 4 pieces. Assume that each person chooses at random without replacement from the available pieces. I am the last person to whom the box is passed. Find the chance that I pick 4 dark chocolates.
Solution
It it no difference between "I" am the first and "I" am the last. $$P=\frac{C_{8}^{4}}{C_{24}^{4}}=\frac{35}{5313}=0.006587615$$ $C_{n}^{m}=\frac{n!}{m!\cdot(n-m)!}$ and its R function is $\text{choose(n, m)}$.
PROBLEM 4
An urn contains 10 white balls and 5 blue balls. Draws are made repeatedly from the urn as follows. On each draw, a ball is drawn and its color noted; then it is replaced in the urn along with 3 more balls of its color. For example, if you draw a white ball the first time, then you will put it back in the urn along with 3 more white balls. So you will end up with 13 white balls and 5 blue balls.
4A Find the chance that the first ball drawn is blue.
4B Find the chance that the second ball drawn is blue, given that the first ball drawn is blue.
4C Find the chance that the second ball drawn is blue.
4D Find the chance that the first ball drawn is blue, given that the second ball drawn is blue.
Solution
4A) $$P(\text{first is blue})=\frac{5}{10+5}=\frac{1}{3}$$
4B) If the first is blue then it would be 10 white balls and 8 blue balls before the second draw. Hence $$P(\text{second is blue}\ |\ \text{first is blue})=\frac{8}{10+8}=\frac{4}{9}$$
4C) $$P(\text{second is blue})=P(\text{second is blue & first is white})+P(\text{second is blue & first is blue})$$ $$=P(\text{first is white})\cdot P(\text{second is blue}\ |\ \text{first is white})$$ $$+P(\text{first is blue})\cdot P(\text{second is blue}\ |\ \text{first is blue})$$ $$=\frac{10}{15}\times\frac{5}{13+5}+\frac{5}{15}\times\frac{8}{10+8}=\frac{1}{3}$$
4D) $$P(\text{first is blue}\ |\ \text{second is blue})=\frac{P(\text{first & second are blue})}{P(\text{second is blue})}=\frac{\frac{5}{15}\times\frac{8}{10+8}}{\frac{1}{3}}=\frac{4}{9}$$
加州大学伯克利分校Stat2.2x Probability 概率初步学习笔记: Section 1 The Two Fundamental Rules (1.5-1.6)的更多相关文章
- 加州大学伯克利分校Stat2.2x Probability 概率初步学习笔记: Section 5 The accuracy of simple random samples
Stat2.2x Probability(概率)课程由加州大学伯克利分校(University of California, Berkeley)于2014年在edX平台讲授. PDF笔记下载(Acad ...
- 加州大学伯克利分校Stat2.2x Probability 概率初步学习笔记: Section 4 The Central Limit Theorem
Stat2.2x Probability(概率)课程由加州大学伯克利分校(University of California, Berkeley)于2014年在edX平台讲授. PDF笔记下载(Acad ...
- 加州大学伯克利分校Stat2.2x Probability 概率初步学习笔记: Section 3 The law of averages, and expected values
Stat2.2x Probability(概率)课程由加州大学伯克利分校(University of California, Berkeley)于2014年在edX平台讲授. PDF笔记下载(Acad ...
- 加州大学伯克利分校Stat2.2x Probability 概率初步学习笔记: Section 2 Random sampling with and without replacement
Stat2.2x Probability(概率)课程由加州大学伯克利分校(University of California, Berkeley)于2014年在edX平台讲授. PDF笔记下载(Acad ...
- 加州大学伯克利分校Stat2.2x Probability 概率初步学习笔记: Final
Stat2.2x Probability(概率)课程由加州大学伯克利分校(University of California, Berkeley)于2014年在edX平台讲授. PDF笔记下载(Acad ...
- 加州大学伯克利分校Stat2.2x Probability 概率初步学习笔记: Midterm
Stat2.2x Probability(概率)课程由加州大学伯克利分校(University of California, Berkeley)于2014年在edX平台讲授. PDF笔记下载(Acad ...
- 加州大学伯克利分校Stat2.3x Inference 统计推断学习笔记: FINAL
Stat2.3x Inference(统计推断)课程由加州大学伯克利分校(University of California, Berkeley)于2014年在edX平台讲授. PDF笔记下载(Acad ...
- 加州大学伯克利分校Stat2.3x Inference 统计推断学习笔记: Section 2 Testing Statistical Hypotheses
Stat2.3x Inference(统计推断)课程由加州大学伯克利分校(University of California, Berkeley)于2014年在edX平台讲授. PDF笔记下载(Acad ...
- 加州大学伯克利分校Stat2.3x Inference 统计推断学习笔记: Section 1 Estimating unknown parameters
Stat2.3x Inference(统计推断)课程由加州大学伯克利分校(University of California, Berkeley)于2014年在edX平台讲授. PDF笔记下载(Acad ...
随机推荐
- 如何在batch脚本中嵌入python代码
老板叫我帮他测一个命令在windows下消耗的时间,因为没有装windows那个啥工具包,没有timeit那个命令,于是想自己写一个,原理很简单: REM timeit.bat echo %TIME% ...
- PHP面向对象编程知识要点
1.基本概念 1.1.面向对象的阶段概念 OOA:面向对象分析 OOD:面向对象设计 OOP:面向对象编程 1.2.类的概念 面向对象中的类,实质上就是现实世界中一类有着相似属性事物抽象的概括,像鸟类 ...
- Github优秀java项目集合(中文版) - 涉及java所有的知识体系
Java资源大全中文版 我想很多程序员应该记得 GitHub 上有一个 Awesome - XXX 系列的资源整理.awesome-java 就是 akullpp 发起维护的 Java 资源列表,内容 ...
- 拿到腾讯实习offer的前后小事
一.前言 本文应该算不上是面经,仅仅是自己近期一路走过的些许琐碎小事,欢迎园友吐槽,但是不要太凶残哦. 二.旧年小事 去年11月底,从上海实习公司请假回校参加研究生毕业论文开题答辩,在校忙碌了一段时间 ...
- 3DMax 常用快捷键
视图切换: T 顶视图 F 前视图, B后视图,L-左视图,右视图因为R键是另外一个功能, 所以是V+R 线框视图切换F3, 实体线框同时出现 F4 模型复位Z P透视图 在透视图的情况下: 鼠标中间 ...
- MVC架构设计——EF-Code First
详情参考:http://www.cnblogs.com/guomingfeng/archive/2013/05/28/mvc-ef-repository.html
- Android开发之AutoCompleteTextView的简单使用
这里只谈简单的使用: 代码xml: <AutoCompleteTextView android:id="@+id/actv" android:layout_width=&qu ...
- 为Mac Terminal设置代理
参考链接:http://tz101.github.io/new-mac-os-x-yosemite-10-10-Xcode-Brew-Shadowsocks-Proxychains/ https:// ...
- C# Label显示多行文本及换行(WinForm/WebForm)
转载: http://www.cnblogs.com/greatverve/archive/2011/10/20/label-multi.html WinForm 很多朋友都会在开发WinForm中遇 ...
- 由 excel 转换为 markdown,及收获
由 excel 转换为 markdown,及收获 1 问题 构建之法(现代软件工程)东北师大站[http://www.cnblogs.com/younggift/]的每周学生作业成绩,执行教学团队[h ...