这题是2016 CCPC 东北四省赛的B题, 其实很简单. 现场想到的就是正解, 只是在合并两个并查集这个问题上没想清楚.

做法

并查集合并 + 归并

  1. 对每个节点 $u$, 将 $u$ 到根的那些边添到一个初始为空的并查集中, 得到的并查集记作 $a_u$.
  2. 询问相当于将 $k$ 个并查集合并. 采用二路归并, 合并次数是 $O(n \cdot \log(n))$.

    $ n/2 + n/4 + n/8 + \dots + 1 = O(n \cdot \log(n)) $

合并两个并查集

详细讨论将并查集 $B$ 合并到并查集 $A$ 中这一问题.

这个问题与

给定两无向图 $A, B, V_B \subset V_A; \quad A(E_A, V_A) \to A'( E_A, E_A \cup E_B) $.

等价.

做法

$ \forall u \in E_B, \quad A.\mathrm{unite}(u, B.\mathrm{root}(u)) $

正确性

只要验证

在$B$中连通的任意两点 $u, v$, 在$ A'$中也连通.

是否满足.

Implementation

#include <bits/stdc++.h>
using namespace std; const int N{1<<9};
const int M=1e4+5; int n, m; struct DSU{
int par[N];
int cnt; int find(int x){
return par[x]==x?x: par[x]=find(par[x]);
} void unite(int x, int y){
x=find(x);
y=find(y);
if(x!=y){
par[x]=y;
--cnt;
}
} void unite(DSU &a){
for(int i=1; i<=n; i++){
unite(find(i), a.find(i)); // ?
}
} void init(){
for(int i=1; i<=n; i++){
par[i]=i;
}
cnt=n;
} void copy(const DSU &a){
for(int i=1; i<=n; i++){
par[i]=a.par[i];
}
cnt=a.cnt;
}
}; DSU a[M], b[M]; vector<int> g[M]; struct Edge{
int u, v;
void read(){
scanf("%d%d", &u, &v);
}
}E[M]; void dfs(int u, int f){
a[u].copy(a[f]);
a[u].unite(E[u].u, E[u].v); for(auto v: g[u]){
dfs(v, u);
}
} void solve(int n){
for(int i=1; i<n; i<<=1){ // error-prone
for(int j=0; j+i<n; j+=i<<1){
b[j].unite(b[j+i]);
}
}
printf("%d\n", b[0].cnt);
} // int par[M]; int main(){ int T, cas{};
for(cin>>T; T--; ){
printf("Case #%d:\n", ++cas);
// int n, m;
cin>>n>>m; for(int i=1; i<=m; ++i){
g[i].clear();
} for(int i=2; i<=m; i++){
// scanf("%d", par+i);
int fa;
scanf("%d", &fa);
g[fa].push_back(i);
} for(int i=1; i<=m; ++i){
E[i].read();
} a[0].init();
dfs(1, 0); int q;
cin>>q;
for(; q--; ){
int k;
scanf("%d", &k);
for(int i=0; i<k; i++){
int x;
scanf("%d", &x);
b[i].copy(a[x]);
}
solve(k);
}
}
return 0;
}

Pitfalls

归并

for(int i=1; i<n; i<<=1){   // error-prone
for(int j=0; j+i<n; j+=i<<1){
b[j].unite(b[j+i]);
}
}

容易写错.

我第一发是这样写的

for(int i=2; i<=n; i<<=1){
for(int j=0; j+i/2<n; j+=i){
b[j].unite(b[j+i/2]);
}
}

n==3时, 只做了1轮归并.

应采纳第一种写法, 很清楚.


UPD

太SB了.

  1. 根本不用归并, 直接逐个合并就好了.
  2. 根本不用 b[i].copy(a[x]); , 只要从一个边集为空的图 (以下简称"空图") 开始, 不断把$k$个并查集合并进去就好了.
  3. 不从空图开始, 而从某个并查集开始, 会快很多.
#include <bits/stdc++.h>
using namespace std; const int N{1<<9};
const int M=1e4+5; int n, m; struct DSU{
int par[N];
int cnt; int find(int x){
return par[x]==x?x: par[x]=find(par[x]);
} void unite(int x, int y){
x=find(x);
y=find(y);
if(x!=y){
par[x]=y;
--cnt;
}
} void unite(DSU &a){
for(int i=1; i<=n; i++){
unite(find(i), a.find(i)); // ?
}
} void init(){
for(int i=1; i<=n; i++){
par[i]=i;
}
cnt=n;
} void copy(const DSU &a){
for(int i=1; i<=n; i++){
par[i]=a.par[i];
}
cnt=a.cnt;
}
}; DSU a[M], b[M]; vector<int> g[M]; struct Edge{
int u, v;
void read(){
scanf("%d%d", &u, &v);
}
}E[M]; void dfs(int u, int f){
a[u].copy(a[f]);
a[u].unite(E[u].u, E[u].v); for(auto v: g[u]){
dfs(v, u);
}
} int solve(int n){
if(k==0){
return n;
}
int x;
scanf("%d", &x);
a[0].copy(a[x]);
for(int i=1; i<n; i++){
scanf("%d", &x);
a[0].unite(a[x]);
}
return a[0].cnt;
} int main(){ int T, cas{};
for(cin>>T; T--; ){
printf("Case #%d:\n", ++cas); cin>>n>>m; for(int i=1; i<=m; ++i){
g[i].clear();
} for(int i=2; i<=m; i++){
// scanf("%d", par+i);
int fa;
scanf("%d", &fa);
g[fa].push_back(i);
} for(int i=1; i<=m; ++i){
E[i].read();
} a[0].init();
dfs(1, 0); int q;
cin>>q;
for(; q--; ){
int k;
scanf("%d", &k);
printf("%d\n", solve(k));
}
}
return 0;
}

HDU 5923 Prediction的更多相关文章

  1. HDU 5923 Prediction(2016 CCPC东北地区大学生程序设计竞赛 Problem B,并查集)

    题目链接  2016 CCPC东北地区大学生程序设计竞赛 B题 题意  给定一个无向图和一棵树,树上的每个结点对应无向图中的一条边,现在给出$q$个询问, 每次选定树中的一个点集,然后真正被选上的是这 ...

  2. HDU 1338 Game Prediction

    http://acm.hdu.edu.cn/showproblem.php?pid=1338 Problem Description Suppose there are M people, inclu ...

  3. HDU 1338 Game Prediction【贪心】

    解题思路: 给出 n  m 牌的号码是从1到n*m 你手里的牌的号码是1到n*m之间的任意n个数,每张牌都只有一张,问你至少赢多少次 可以转化为你最多输max次,那么至少赢n-max次 而最多输max ...

  4. HDU——PKU题目分类

    HDU 模拟题, 枚举1002 1004 1013 1015 1017 1020 1022 1029 1031 1033 1034 1035 1036 1037 1039 1042 1047 1048 ...

  5. HDU 5925 Coconuts 【离散化+BFS】 (2016CCPC东北地区大学生程序设计竞赛)

    Coconuts Time Limit: 9000/4500 MS (Java/Others)    Memory Limit: 65536/65536 K (Java/Others)Total Su ...

  6. hdu 5895 广义Fibonacci数列

    Mathematician QSC Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 131072/131072 K (Java/Othe ...

  7. HDOJ 2111. Saving HDU 贪心 结构体排序

    Saving HDU Time Limit: 3000/1000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Others) Total ...

  8. 【HDU 3037】Saving Beans Lucas定理模板

    http://acm.hdu.edu.cn/showproblem.php?pid=3037 Lucas定理模板. 现在才写,noip滚粗前兆QAQ #include<cstdio> #i ...

  9. hdu 4859 海岸线 Bestcoder Round 1

    http://acm.hdu.edu.cn/showproblem.php?pid=4859 题目大意: 在一个矩形周围都是海,这个矩形中有陆地,深海和浅海.浅海是可以填成陆地的. 求最多有多少条方格 ...

随机推荐

  1. 基于ASP.NET MVC的热插拔模块式开发框架(OrchardNoCMS)--瘦身计划

    Orchard CMS是针对CMS开发的,对于很多开发需求来说,内容管理这块儿可能并不需要,而需要它的模块式开发模式.所以我这里通过对OrchardCMS进行瘦身,去除 内容管理部分的内容,保留简单的 ...

  2. Java的性能优化

    http://www.toutiao.com/i6368345864624144897/?tt_from=mobile_qq&utm_campaign=client_share&app ...

  3. 虾皮工作室QQ群列表

    各位博友: 本群不仅仅是提供好的资料,更重要是提供平台,提供解决问题的方法和思路.求人不如求己,掌握合理的方法和方式才是不断进步的根本.看我的文档,不单单是看内容,更应该从整理的方式和角度是深思,去想 ...

  4. 读懂IL代码就这么简单(三)完结篇

    一 前言 写了两篇关于IL指令相关的文章,分别把值类型与引用类型在 堆与栈上的操作区别详细的写了一遍 这第三篇也是最后一篇,之所以到第三篇就结束了,是因为以我现在的层次,能理解到的都写完了,而且个人认 ...

  5. Web性能优化-合并js与css,减少请求

    Web性能优化已经是老生常谈的话题了, 不过笔者也一直没放在心上,主要的原因还是项目的用户量以及页面中的js,css文件就那几个,感觉没什么优化的.人总要进步的嘛,最近在被angularjs吸引着,也 ...

  6. FPGA中的INOUT接口和高阻态

    除了输入输出端口,FPGA中还有另一种端口叫做inout端口.如果需要进行全双工通信,是需要两条信道的,也就是说需要使用两个FPGA管脚和外部器件连接.但是,有时候半双工通信就能满足我们的要求,理论上 ...

  7. [网站公告]3月10日23:00-4:00阿里云SLB升级,会有4-8次连接闪断

    大家好,阿里云将于3月10日23:00-4:00对负载均衡服务(SLB)做升级操作,升级期间SLB网络连接会有约4-8次闪断.由此给您带来麻烦,敬请谅解! 阿里云SLB升级公告内容如下: 尊敬的用户: ...

  8. Nodejs爬虫进阶=>异步并发控制

    之前写了个现在看来很不完美的小爬虫,很多地方没有处理好,比如说在知乎点开一个问题的时候,它的所有回答并不是全部加载好了的,当你拉到回答的尾部时,点击加载更多,回答才会再加载一部分,所以说如果直接发送一 ...

  9. js单选和复选框

    http://blog.csdn.net/chelen_jak/article/details/44827393 http://www.gbtags.com/technology/jquerynews ...

  10. [BZOJ1061][Noi 2008]志愿者招募(网络流)

    题目:http://www.lydsy.com:808/JudgeOnline/problem.php?id=1061 分析: 神题不解释,只能欣赏:https://www.byvoid.com/bl ...