转载请注明出处:http://www.cnblogs.com/BYRans/

多分类问题

在一个多分类问题中,因变量y有k个取值,即。例如在邮件分类问题中,我们要把邮件分为垃圾邮件、个人邮件、工作邮件3类,目标值y是一个有3个取值的离散值。这是一个多分类问题,二分类模型在这里不太适用。

多分类问题符合多项分布。有许多算法可用于解决多分类问题,像决策树、朴素贝叶斯等。这篇文章主要讲解多分类算法中的Softmax回归(Softmax Regression)

推导思路为:首先证明多项分布属于指数分布族,这样就可以使用广义线性模型来拟合这个多项分布,由广义线性模型推导出的目标函数即为Softmax回归的分类模型。

证明多项分布属于指数分布族

多分类模型的输出结果为该样本属于k个类别的概率,从这k个概率中我们选择最优的概率对应的类别(通常选概率最大的类别),作为该样本的预测类别。这k个概率用k个变量…,表示。这个k变量和为1,即满足:

可以用前k-1个变量来表示,即:

使用广义线性模型拟合这个多分类问题,首先要验证这个多项分布是否符合一个指数分布族。定义T(y)为:

在这里,统计分量T(y)并没有像之前那样定义为T(y)=y,因为T(y)不是一个数值,而是一个k-1维的向量。使用符号表示向量T(y)的第i个元素。

在这里引入一个新符号:,如果括号内为true则这个符号取1,反之取0,即。所以,T(y)与y的关系就可以表示为

关系为:

即:

多项分布表达式转化为指数分布族表达式过程如下:

其中:

变换过程:

第一步:取值为…,中的一个,取决于y的取值。当y=i时,这一步可以理解为

第二步:消去

第三步:根据

第四、五步:转换为广义线性模型的表达格式。

多项分布表达式可以表示为指数分布族表达式的格式,所以它属于指数分布族,那么就可以用广义线性模型来拟合这个多项式分布模型。

Softmax函数(Softmax Function)

在使用广义线性模型拟合这个多项式分布模型之前,需要先推导一个函数,这个函数在广义线性模型的目标函数中会用到。这个函数称为Softmax函数(Softmax Function)

由η表达式可得:

这是关于的表达式,把它转化为关于的表达式过程为:

为了方便,令,那么

因为:

所以:

这个关于的的函数称为Softmax函数(Softmax Function)

使用广义线性构建模型

根据广义线性模型的假设3:

θ是模型中的参数,为了符号上的方便我们定义,所以

所以模型在给定x的条件下y的分布为:

上面的表达式求解的是在y=i时的概率。在Softmax回归这个广义线性模型中,目标函数是:

Softmax回归目标函数的输出是k个概率,即其中i=1,2,…,k(虽然输出的是k-1个值,但是第k个值可以由求出),求解了这个目标函数,我们就构造出了分类模型。

目标函数推导过程如下:

现在求解目标函数还差最后一步:参数拟合的问题。跟我们之前的参数拟合方法类似,我们有m个训练样本,θ的似然函数为:

最大化似然函数来求解最优的参数θ,可以使用梯度上升或者牛顿方法

求解了最优的参数θ后,就可以使用目标函数进行分类。使用函数进行多分类的方式就叫Softmax回归(Softmax Regression)

Softmax回归 VS k个二元分类器

  如果你在开发一个音乐分类的应用,需要对k种类型的音乐进行识别,那么是选择使用softmax分类器呢,还是使用logistic回归算法建立 k个独立的二元分类器呢?

  这一选择取决于你的类别之间是否互斥,例如,如果你有四个类别的音乐,分别为:古典音乐、乡村音乐、摇滚乐和爵士乐,那么你可以假设每个训练样本只会被打上一个标签(即:一首歌只能属于这四种音乐类型的其中一种),此时你应该使用类别数 k = 4 的softmax回归。(如果在你的数据集中,有的歌曲不属于以上四类的其中任何一类,那么你可以添加一个“其他类”,并将类别数 k 设为5。)

  如果你的四个类别如下:人声音乐、舞曲、影视原声、流行歌曲,那么这些类别之间并不是互斥的。例如:一首歌曲可以来源于影视原声,同时也包含人声 。这种情况下,使用4个二分类的logistic回归分类器更为合适。这样,对于每个新的音乐作品 ,我们的算法可以分别判断它是否属于各个类别。

Softmax回归(Softmax Regression)的更多相关文章

  1. Softmax回归(Softmax Regression, K分类问题)

    Softmax回归:K分类问题, 2分类的logistic回归的推广.其概率表示为: 对于一般训练集:                     系统参数为:      Softmax回归与Logist ...

  2. Softmax回归 softMax回归与logistic回归的关系

    简介 在本节中,我们介绍Softmax回归模型,该模型是logistic回归模型在多分类问题上的推广,在多分类问题中,类标签  可以取两个以上的值. Softmax回归模型对于诸如MNIST手写数字分 ...

  3. 【机器学习】Softmax 和Logistic Regression回归Sigmod

    二分类问题Sigmod 在 logistic 回归中,我们的训练集由  个已标记的样本构成: ,其中输入特征.(我们对符号的约定如下:特征向量  的维度为 ,其中  对应截距项 .) 由于 logis ...

  4. Machine Learning 学习笔记 (3) —— 泊松回归与Softmax回归

    本系列文章允许转载,转载请保留全文! [请先阅读][说明&总目录]http://www.cnblogs.com/tbcaaa8/p/4415055.html 1. 泊松回归 (Poisson ...

  5. 机器学习 —— 基础整理(五)线性回归;二项Logistic回归;Softmax回归及其梯度推导;广义线性模型

    本文简单整理了以下内容: (一)线性回归 (二)二分类:二项Logistic回归 (三)多分类:Softmax回归 (四)广义线性模型 闲话:二项Logistic回归是我去年入门机器学习时学的第一个模 ...

  6. 手写数字识别 ----Softmax回归模型官方案例注释(基于Tensorflow,Python)

    # 手写数字识别 ----Softmax回归模型 # regression import os import tensorflow as tf from tensorflow.examples.tut ...

  7. 《转》Logistic回归 多分类问题的推广算法--Softmax回归

    转自http://ufldl.stanford.edu/wiki/index.php/Softmax%E5%9B%9E%E5%BD%92 简介 在本节中,我们介绍Softmax回归模型,该模型是log ...

  8. 逻辑回归,多分类推广算法softmax回归中

    转自http://ufldl.stanford.edu/wiki/index.php/Softmax%E5%9B%9E%E5%BD%92 简介 在本节中,我们介绍Softmax回归模型,该模型是log ...

  9. 02-13 Softmax回归

    目录 Softmax回归 一.Softmax回归详解 1.1 让步比 1.2 不同类之间的概率分布 1.3 目标函数 1.4 目标函数最大化 二.Softmax回归优缺点 2.1 优点 2.2 缺点 ...

  10. 利用TensorFlow识别手写的数字---基于Softmax回归

    1 MNIST数据集 MNIST数据集主要由一些手写数字的图片和相应的标签组成,图片一共有10类,分别对应从0-9,共10个阿拉伯数字.原始的MNIST数据库一共包含下面4个文件,见下表. 训练图像一 ...

随机推荐

  1. java servlet调用带有多个返回结果集的存储过程

    一.mysql存储过程 这里我先说下我这个功能实现的逻辑及途中遇到的一些问题.这个存储过程一共带两个输入参数,一共关联到两张表的查询,每个参数都对应查询表中的一个判断,所以一共返回了两个结果集(当然要 ...

  2. 操作系统笔记系列 一 Linux

    学习资料: 1.http://www.icoolxue.com/   马士兵 1.Linux 服务器端,目前98%的服务器都是Linux. 2.

  3. 泛函编程(35)-泛函Stream IO:IO处理过程-IO Process

    IO处理可以说是计算机技术的核心.不是吗?使用计算机的目的就是希望它对输入数据进行运算后向我们输出计算结果.所谓Stream IO简单来说就是对一串按序相同类型的输入数据进行处理后输出计算结果.输入数 ...

  4. virtualenvwrapper安装使用

    安装 linux和mac下安装 pip install virutalenv virtualenvwrapper windows下安装 pip install virtualenvwrapper-wi ...

  5. android 查找某个特定文件后缀名

    private void queryFiles(){ String[] projection = new String[] { MediaStore.Files.FileColumns._ID, Me ...

  6. Redis-分片

    分片(partitioning)就是将你的数据拆分到多个 Redis 实例的过程,这样每个实例将只包含所有键的子集.本文第一部分将向你介绍分片的概念,第二部分将向你展示 Redis 分片的可选方案. ...

  7. js 字符串 replace replaceAll

    var str = "男的女的老的少的"; alert(str.replace('的','')); 可以看到替换后的str的值为"男女的老的少的",replac ...

  8. Rainyday.js – 使用 JavaScript 实现雨滴效果

    Rainyday.js 背后的想法是创建一个 JavaScript 库,利用 HTML5 Canvas 渲染一个雨滴落在玻璃表面的动画.Rainyday.js 有功能可扩展的 API,例如碰撞检测和易 ...

  9. HTML5拖拽实例

    最近应该会用到,借用一下......小妹儿,你又变懒了 拖拽相关属性 draggable属性是html5的全局属性,是html5支持拖放操作的方式之一,用来表示元素是否可以被拖放,draggable有 ...

  10. 如何排查sharepoint2010用户配置文件同步服务启动问题

    用户配置文件同步服务与 Microsoft Forefront Identity Manager (FIM) 交互,以与外部系统(如目录服务和业务系统)同步配置文件信息.启用用户配置文件同步服务时,将 ...