【codevs1907】 方格取数 3
http://codevs.cn/problem/1907/ (题目链接)
题意
N*N的方格,每个格子中有一个数,从中取出不相邻的任意个数,使得取到的数的和最大。
Solution
裸的二分图带权最大独立集。
二分图带权最大独立集。给出一个二分图,每个节点上有一个正权值。要求选出一些点,使得这些点之间没有边相连,且权值和最大。
在二分图的基础上添加源点S和汇点T,然后从S向所有X集合中的点连一条边,所有Y集合中的点向T连一条边,容量均为该店的权值。X节点与Y节点之间的边的容量均为无穷大。这样,对于该图中的任意一个割,将割中的边对应的节点删掉就是一个符合要求的解,权和为所有权和减去割的容量。因此,只需要求出最小割,就能求出最大权和。
于是这道题的建图就很明显了,对于点(i,j),如果i+j是2的倍数,那么将它置于左集,反之置于右集,添加源点汇点,求最小割即可。
代码
// codevs1907
#include<algorithm>
#include<iostream>
#include<cstring>
#include<cstdlib>
#include<cstdio>
#include<cmath>
#include<queue>
#define LL long long
#define inf 2147483640
#define Pi acos(-1.0)
#define free(a) freopen(a".in","r",stdin),freopen(a".out","w",stdout);
using namespace std; const int maxn=1000;
struct edge {int to,next,w;}e[maxn*100];
int head[maxn],d[maxn];
int cnt=1,n,m,ans,es,et; void link(int u,int v,int w) {
e[++cnt]=(edge){v,head[u],w};head[u]=cnt;
e[++cnt]=(edge){u,head[v],0};head[v]=cnt;
}
bool bfs() {
memset(d,-1,sizeof(d));
queue<int> q;q.push(es);d[es]=0;
while (!q.empty()) {
int x=q.front();q.pop();
for (int i=head[x];i;i=e[i].next) if (e[i].w && d[e[i].to]<0) {
d[e[i].to]=d[x]+1;
q.push(e[i].to);
}
}
return d[et]>0;
}
int dfs(int x,int f) {
if (x==et || f==0) return f;
int w,used=0;
for (int i=head[x];i;i=e[i].next) if (e[i].w && d[e[i].to]==d[x]+1) {
w=dfs(e[i].to,min(e[i].w,f-used));
used+=w;
e[i].w-=w;e[i^1].w+=w;
if (used==f) return used;
}
if (!used) d[x]=-1;
return used;
}
void Dinic() {
while (bfs()) ans-=dfs(es,inf);
}
int main() {
scanf("%d%d",&n,&m);
es=n*m+1;et=n*m+2;
for (int i=1;i<=n;i++)
for (int x,j=1;j<=m;j++) {
scanf("%d",&x);
ans+=x;
if ((i+j)%2==1) {link((i-1)*m+j,et,x);continue;}
link(es,(i-1)*m+j,x);
if (i>1) link((i-1)*m+j,(i-2)*m+j,inf);
if (i<n) link((i-1)*m+j,i*m+j,inf);
if (j>1) link((i-1)*m+j,(i-1)*m+j-1,inf);
if (j<m) link((i-1)*m+j,(i-1)*m+j+1,inf);
}
Dinic();
printf("%d",ans);
return 0;
}
【codevs1907】 方格取数 3的更多相关文章
- codevs1907 方格取数 3
«问题描述:在一个有m*n 个方格的棋盘中,每个方格中有一个正整数.现要从方格中取数,使任意2 个数所在方格没有公共边,且取出的数的总和最大.试设计一个满足要求的取数算法.«编程任务:对于给定的方格棋 ...
- 【codevs1907】方格取数3(最大流最小割定理)
网址:http://codevs.cn/problem/1907/ 题意:在一个矩阵里选不相邻的若干个数,使这些数的和最大. 我们可以把它看成一个最小割,答案就是矩阵中的所有数-最小割.先把矩阵按国际 ...
- 线性规划与网络流24题●09方格取数问题&13星际转移问题
●(做codevs1908时,发现测试数据也涵盖了1907,想要一并做了,但因为“技术”不佳,搞了一上午) ●09方格取数问题(codevs1907 方格取数3) 想了半天,也没成功建好图: 无奈下 ...
- HDU 1565&1569 方格取数系列(状压DP或者最大流)
方格取数(2) Time Limit: 10000/5000 MS (Java/Others) Memory Limit: 65536/32768 K (Java/Others) Total S ...
- NOIP200003方格取数
NOIP200003方格取数 难度级别: D: 编程语言:不限:运行时间限制:1000ms: 运行空间限制:51200KB: 代码长度限制:2000000B 试题描述 XYZ 是首师大附中信息技术团编 ...
- vijos 1563 疯狂的方格取数
P1653疯狂的方格取数 Accepted 标签:天才的talent[显示标签] 背景 Due to the talent of talent123,当talent123做完NOIP考了两次的二取 ...
- [HDU 1565+1569] 方格取数
HDU 1565 方格取数(1) Time Limit: 10000/5000 MS (Java/Others) Memory Limit: 32768/32768 K (Java/Others ...
- 网络流(最大流) HDU 1565 方格取数(1) HDU 1569 方格取数(2)
HDU 1565 方格取数(1) 给你一个n*n的格子的棋盘,每个格子里面有一个非负数.从中取出若干个数,使得任意的两个数所在的格子没有公共边,就是说所取的数所在的2个格子不能相邻,并且取出的数的 ...
- HDU-1565 方格取数(1)
http://acm.hdu.edu.cn/showproblem.php?pid=1565 方格取数(1) Time Limit: 10000/5000 MS (Java/Others) Me ...
- BZOJ 1475: 方格取数( 网络流 )
本来想写道水题....结果调了这么久!就是一个 define 里面少加了个括号 ! 二分图最大点权独立集...黑白染色一下 , 然后建图 : S -> black_node , white_no ...
随机推荐
- 未能正确加载包“Microsoft.Data.Entity.Design.Package.MicrosoftDataEntityDesignPackage
本文出处:http://blog.sina.com.cn/s/blog_6fe3efa301016i64.html vs 2005 ,vs 2008, vs 2010,安装后有时出现这个错误(我的机器 ...
- P3398 仓鼠找sugar
P3398 仓鼠找sugar 题目描述 小仓鼠的和他的基(mei)友(zi)sugar住在地下洞穴中,每个节点的编号为1~n.地下洞穴是一个树形结构.这一天小仓鼠打算从从他的卧室(a)到餐厅(b),而 ...
- Codevs 1051 二叉树最大宽度和高度
1501 二叉树最大宽度和高度 时间限制: 1 s 空间限制: 128000 KB 题目等级 : 白银 Silver 题目描述 Description 给出一个二叉树,输出它的最大宽 ...
- keytool命令记录
1.生成服务器端私钥kserver.keystore文件 2.根据私钥,导出服务器端安全证书 3.将服务器端证书,导入到客户端的Trust KeyStore中 4.生成客户端私钥kclient.key ...
- top状态及其常用技巧
看tcp状态 /bin/netstat -an|awk '/^tcp/{++S[$NF]}END{for(a in S) print a,S[a]}' 在 top 状态下,按 "shif ...
- Java 8 Lambda表达式探险
为什么? 我们为什么需要Lambda表达式 主要有三个原因: > 更加紧凑的代码 比如Java中现有的匿名内部类以及监听器(listeners)和事件处理器(hand ...
- web—第四章css&第五章
web—第四章css&第五章 终于迎接等待已久的CSS,在没学这个之前,我们只会用一点img,查一点小图片,或者是用style改一下颜色,而且比较麻烦.现在多了个css在文件夹在创建一个cs ...
- unix环境高级编程基础知识之第一篇
陆陆续续看完了圣经第一章,熟悉了unix的整个编程流程,c语言的用处在这里得到伸张. 从unix的体系结构,原来操作系统包括内核及一些其他软件,我们常常误称为linux内核为操作系统,这俨然成为一种共 ...
- Javascript中的循环变量声明,到底应该放在哪儿?
相信很多Javascript开发者都在声明循环变量时犹豫过var i到底应该放在哪里:放在不同的位置会对程序的运行产生怎样的影响?哪一种方式符合Javascript的语言规范?哪一种方式和ecma标准 ...
- SQLite剖析之内核研究
先从全局的角度把握SQLite内核各个模块的设计和功能.SQLite采用了层次化.模块化的设计,而这些使得它的可扩展性和可移植性非常强.而且SQLite的架构与通用DBMS的结构差别不是很大,所以它对 ...