题目链接:

http://acm.hdu.edu.cn/showproblem.php?pid=4471

解题思路,矩阵快速幂····特殊点特殊处理·····

令h为计算某个数最多须知前h个数,于是写出方程:

D =

c1 c2 ``` c[h-1] c[h]
1 0 ``` 0 0
0 1 ``` 0 0
0 0   0 0
0 0   1 0

V[x] =

f[x]
f[x-1]
`
`
f[x-h+1]

显然有V[x+1] = D*V[x].D是由系数行向量,一个(h-1)*(h-1)的单位矩阵,和一个(h-1)*1的0矩阵组成。V[x]是一个h行,1列的矩阵。

初始条件为V[m] = (f[m],f[m-1],`````).如果m>h,那么多余的部分不会用到,如果m<h剩下的部分用0取代,相当于人为的添加前项f[0] = 0,f[-1] = 0·····这不会影响结果,而且式子仍然成立。由此计算出V[n],答案就为V[1][1].

其余看一下代码就OK了,还有别人的解题报告,也可以看一下:

链接:

http://www.07net01.com/program/547544.html

我的代码:

 #include<cstdio>
#include<algorithm>
using namespace std;
const int N =;
const int mod = ;
int h;//计算f[x]时最多和前面h个数有关
struct matrix
{
int row,col;
int m[N][N];
void init(int row,int col)
{
this->row = row;
this->col = col;
for(int i=; i<=row; ++i)
for(int j=; j<=col; ++j)
m[i][j] = ;
}
} A,pm[],ans; matrix operator*(const matrix & a,const matrix& b)
{
matrix res;
res.init(a.row,b.col);
for(int k=; k<=a.col; ++k)
{
for(int i=; i<= res.row; ++i)
{
if(a.m[i][k] == ) continue;
for(int j = ; j<=res.col; ++j)
{
if(b.m[k][j] == ) continue;
res.m[i][j] = (1LL *a.m[i][k]*b.m[k][j] + res.m[i][j])%mod;
}
}
}
return res;
} void cal(int x)
{
for(int i=; i<=; ++i)
if(x & (<<i) ) ans = pm[i]*ans;
}
void getPm()
{
pm[] = A;
for(int i=; i<=; ++i)
pm[i] = pm[i-]*pm[i-];
}
struct sp//特殊点
{
int nk,tk;//nk为点的位置,tk为计算nk时和前面tk个数有关
int ck[N];
bool operator<(const sp & o)const//按照nk排序
{
return nk<o.nk;
}
} p[N];
int main()
{
// freopen("in.txt","r",stdin);
int n,m,q,t,f[N],c[N],kase=;
while(~scanf("%d%d%d",&n,&m,&q))
{
for(int i=m; i>; --i) scanf("%d",&f[i]);
scanf("%d",&t);
h =t;
for(int i=; i<=t; ++i) scanf("%d",&c[i]);
for(int i=; i<q; ++i)
{
scanf("%d%d",&p[i].nk,&p[i].tk);
if(p[i].tk > h) h = p[i].tk;
for(int j=; j<=p[i].tk; ++j) scanf("%d",&p[i].ck[j]);
}
sort(p,p+q);
A.init(h,h);
for(int i=; i<=t; ++i) A.m[][i] = c[i];
for(int i=; i<=h; ++i) A.m[i][i-] = ;
getPm();
ans.init(h,);
for(int i = m; i > ; --i) ans.m[i][] = f[i];
int last=m;
for(int i=; i<q; ++i)
{
if( p[i].nk <=last || p[i].nk >n ) continue;
cal( p[i].nk-last-);
last = p[i].nk;
for(int j=; j<=p[i].tk; ++j) A.m[][j] = p[i].ck[j];
for(int j=p[i].tk+; j<=h; ++j) A.m[][j] = ;
ans =A*ans;
}
cal(n-last);
printf("Case %d: %d\n",++kase,ans.m[][]);
}
return ;
}

HDU 4471 矩阵快速幂 Homework的更多相关文章

  1. HDU 2855 (矩阵快速幂)

    题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=2855 题目大意:求$S(n)=\sum_{k=0}^{n}C_{n}^{k}Fibonacci(k)$ ...

  2. HDU - 1575——矩阵快速幂问题

    HDU - 1575 题目: A为一个方阵,则Tr A表示A的迹(就是主对角线上各项的和),现要求Tr(A^k)%9973.  Input数据的第一行是一个T,表示有T组数据. 每组数据的第一行有n( ...

  3. hdu 1757 (矩阵快速幂) 一个简单的问题 一个简单的开始

    题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=1757 题意不难理解,当x小于10的时候,数列f(x)=x,当x大于等于10的时候f(x) = a0 * ...

  4. 随手练——HDU 5015 矩阵快速幂

    题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=5015 看到这个限时,我就知道这题不简单~~矩阵快速幂,找递推关系 我们假设第一列为: 23 a1 a2 ...

  5. HDU 3802 矩阵快速幂 化简递推式子 加一点点二次剩余知识

    求$G(a,b,n,p) = (a^{\frac {p-1}{2}}+1)(b^{\frac{p-1}{2}}+1)[(\sqrt{a} + \sqrt{b})^{2F_n} + (\sqrt{a} ...

  6. How many ways?? HDU - 2157 矩阵快速幂

    题目描述 春天到了, HDU校园里开满了花, 姹紫嫣红, 非常美丽. 葱头是个爱花的人, 看着校花校草竞相开放, 漫步校园, 心情也变得舒畅. 为了多看看这迷人的校园, 葱头决定, 每次上课都走不同的 ...

  7. HDU 5950 矩阵快速幂

    Recursive sequence Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Other ...

  8. hdu 1757 矩阵快速幂 **

    一看正确率这么高,以为是水题可以爽一发,结果是没怎么用过的矩阵快速幂,233 题解链接:点我 #include<iostream> #include<cstring> ; us ...

  9. HDU 4686 矩阵快速幂 Arc of Dream

    由式子的性质发现都是线性的,考虑构造矩阵,先有式子,a[i] = ax * a[i-1] + ay; b[i] = bx*b[i-1] +by; a[i]*b[i] = ax*bx*a[i-1]*b[ ...

随机推荐

  1. HTML布局与框架

    HTML块 HTML块元素 块元素在显示时,通常会以新行开始 如:<h1>.<p>.<ul> <!DOCTYPE html> <html> ...

  2. sqlalchemy 优化count()……

    一.sqlalchemy 中的count() count()统计数据特别慢: session.query(cls).count()  8W 数据花费了近50s 但是在数据库中直接查询: select ...

  3. Beautiful 疑问小记

    一.获取id和class的text() html = urlopen(real_url) bsObj = BeautifulSoup(html) h1 = bsObj.h1.get_text() co ...

  4. 学习mongo系列(七)aggregate() ,$group() 管道

    aggregate()聚合,主要用于处理数据(诸如统计平均值,求和等),并返回计算后的数据结果.有点类似sql语句中的 count(*) 接上边的数据库: > db.user.aggregate ...

  5. IOS_改变UITextField placeHolder颜色、字体

    http://blog.sina.com.cn/s/blog_671d2e4f0101d90v.html

  6. java 获取项目绝对路径

    String classPath = Thread.currentThread().getContextClassLoader().getResource("").getPath( ...

  7. Retrofit 2.0使用

    最近在想能不能把之前项目里的网络请求改下 想通过Retrofit重构下,因为Retrofit完美兼容Rxjava后面会用到Rxjava 所以 开个坑写点 由于网上Retrofit 2.0的架构介绍很详 ...

  8. Music Review

    (What do you want to do?)(What do you want to do?)(What do you want to do?)(What is the meaning of l ...

  9. Python学习推荐

    1.    Python官网 官网想必是最权威的,不仅有Python 2.X和3.X的软件包,还有官方文档Python tutorial (official docs)及社区. 2.    在线阅读免 ...

  10. Linux Vim不明原因卡死解决办法

    使用vim的时候,偶尔会碰到vim莫名其妙的僵在那里. 解决方案: 经查,原来Ctrl+S在Linux里是锁定屏幕的快捷键,如果要解锁,按下Ctrl+Q就可以了. 经验总结: 牢记这两个VIM组合键 ...