Smallest Bounding Rectangle

Given the Cartesian coordinates of n(>0)2-dimensional points, write a program that computes the area of their smallest bounding rectangle (smallest rectangle containing all the given points).

Input

The input le may contain multiple test cases. Each test case begins with a line containing a positive

integer n(<1001) indicating the number of points in this test case. Then follows n lines each containing

two real numbers giving respectively the x - and y

-coordinates of a point. The input terminates with a

test case containing a value 0 for n which must not be processed.

Output

For each test case in the input print a line containing the area of the smallest bounding rectangle

rounded to the 4th digit after the decimal point.

Sample Input

3

-3.000 5.000

7.000 9.000

17.000 5.000

4

10.000 10.000

10.000 20.000

20.000 20.000

20.000 10.000

0

Sample Output

80.0000

100.0000

最小外接矩形,不会简单的方法,只能将所给点构成凸包,然后枚举凸包上相邻的两点与x轴的夹角作为矩形的倾斜角c,然后求出沿倾斜角c的方向上的凸包映射的长度和垂直倾斜角c的方向上的映射长度为矩形的长和宽.

#include <iostream>
#include <cstdio>
#include <cmath>
#include <cstring>
#include <cstdlib>
#include <string>
#include <queue>
#include <stack>
#include <set>
#include <vector>
#include <map>
#include <algorithm>
#define LL long long using namespace std; const int INF = 0x3f3f3f3f; const int Max = 1011; const double eps = 1e-8; const double Pi = acos(-1.0); int sgn(double x)//精度处理
{
if(fabs(x)<eps)
{
return 0;
}
if(x<0)
{
return -1;
}
else
{
return 1;
}
} struct Point
{
double x,y;
Point() {};
Point(double _x,double _y)
{
x=_x;
y=_y;
}
Point operator - (const Point &b)const
{
return Point(x-b.x,y-b.y);
}
double operator ^ (const Point &b)const
{
return x*b.y-y*b.x;
}
double operator * (const Point &b)const
{
return x*b.x+y*b.y;
}
void transXY(double B)
{
double tx = x,ty=y;
x =tx*cos(B)-ty*sin(B);
y = tx*sin(B)+ty*cos(B);
}
} List[Max]; double dist(Point a,Point b)
{
return sqrt((a-b)*(a-b));
}
int Stack[Max],top; bool _cmp(Point p1,Point p2)//极角排序
{
double tmp = (p1-List[0])^(p2-List[0]);
if(sgn(tmp)>0)
{
return true;
}
else if(sgn(tmp)==0 && sgn(dist(p1,List[0])-dist(p2,List[0]))<=0)
{
return true;
}
else
{
return false;
}
} void Graham(int n)//凸包
{
Point p0;
int k = 0;
p0=List[0];
for(int i=1; i<n; i++)
{
if((p0.y>List[i].y)||(p0.y==List[i].y&&p0.x>List[i].x))
{
p0=List[i];
k=i;
}
}
swap(List[k],List[0]);
sort(List+1,List+n,_cmp);
if(n==1)
{
top=1;
Stack[0]=0;
return ;
}
if(n==2)
{
top= 2 ;
Stack[0]=0;
Stack[1]=1;
return ;
}
Stack[0]= 0 ;
Stack[1]=1;
top=2;
for(int i=2; i<n; i++)
{
while(top>1&&sgn((List[Stack[top-1]]-List[Stack[top-2]])^(List[i]-List[Stack[top-2]]))<=0)
top--;
Stack[top++]=i;
}
} double Get(int n)//计算矩形的最小面积
{
double ant,ans ,dis ;
double x,y;
double sum = INF;
Point a;
for(int i=0; i<n; i++)
{
a=List[Stack[(i+1)%n]]-List[Stack[i]];
ant = atan2(a.y,a.x);//倾斜角
x = 0;
y = 0;
for(int j=0; j<n; j++)
{
a=List[Stack[(j+1)%n]]-List[Stack[j]];
dis =sqrt(a.x*a.x+a.y*a.y);
ans = atan2(a.y,a.x);
x+=fabs(dis*sin(ans-ant));//映射总和
y+=fabs(dis*cos(ans-ant));//映射总和
}
sum = min(x*y,sum);
}
return sum/4; }
int main()
{
int n;
while(scanf("%d",&n)&&n)
{
top = 0;
for(int i=0; i<n; i++)
{
scanf("%lf %lf",&List[i].x,&List[i].y);
}
Graham(n); printf("%.4f\n",Get(top));
} return 0;
}

Smallest Bounding Rectangle - uva10173的更多相关文章

  1. 此坑待填 离散化思想和凸包 UVA - 10173 Smallest Bounding Rectangle

    Smallest Bounding Rectangle Given the Cartesian coordinates of n(>0)2-dimensional points, write a ...

  2. UVA10173 Smallest Bounding Rectangle 最小面积矩形覆盖

    \(\color{#0066ff}{题目描述}\) 给定n(>0)二维点的笛卡尔坐标,编写一个程序,计算其最小边界矩形的面积(包含所有给定点的最小矩形). 输入文件可以包含多个测试样例.每个测试 ...

  3. UVA 12307 Smallest Enclosing Rectangle

    https://vjudge.net/problem/UVA-12307 求覆盖所有点的最小矩形面积.周长 相当于求凸包的最小面积外接矩形.最小周长外接矩形 结论: 这个矩形一定有一条边和凸包上一条边 ...

  4. UVA 12307 Smallest Enclosing Rectangle(旋转卡壳)

    题意:给你一些点,找出两个可以包含所有点的矩形,一个保证矩形面积最小,一个保证矩形周长最小,输出两个最小值 题解:首先根据所有点求一个凸包,再在这个凸包上枚举每条边,作为矩形的一条边(这样可以保证最小 ...

  5. bzoj AC倒序

    Search GO 说明:输入题号直接进入相应题目,如需搜索含数字的题目,请在关键词前加单引号 Problem ID Title Source AC Submit Y 1000 A+B Problem ...

  6. [LeetCode] Smallest Rectangle Enclosing Black Pixels 包含黑像素的最小矩阵

    An image is represented by a binary matrix with 0 as a white pixel and 1 as a black pixel. The black ...

  7. Smallest Rectangle Enclosing Black Pixels

    An image is represented by a binary matrix with 0 as a white pixel and 1 as a black pixel. The black ...

  8. LeetCode Smallest Rectangle Enclosing Black Pixels

    原题链接在这里:https://leetcode.com/problems/smallest-rectangle-enclosing-black-pixels/ 题目: An image is rep ...

  9. 302. Smallest Rectangle Enclosing Black Pixels

    题目: An image is represented by a binary matrix with 0 as a white pixel and 1 as a black pixel. The b ...

随机推荐

  1. cursor 手型样式

    cursor:hand 与 cursor:pointer 的效果是一样,都像手形光标.但用FireFox浏览时才注意到使用cursor:hand在FireFox里并被支持.cursor:hand :I ...

  2. 一些变态的PHP一句话后门收集

    这类后门让网站.服务器管理员很是头疼,经常要换着方法进行各种检测,而很多新出现的编写技术,用普通的检测方法是没法发现并处理的.今天我们细数一些有意思的PHP一句话木马. 利用404页面隐藏PHP小马 ...

  3. win2003远程桌面端口修改

    win2003远程桌面端口修改   1.改端口:简单操作步骤:打开"开始→运行",输入"regedit",打开注册表,进入以下路径:[HKEY_LOCAL_MA ...

  4. Bash中各种以$开头的特殊变量的含义

    $$ Shell本身的PID(ProcessID) $! Shell最后运行的后台Process的PID $? 最后运行的命令的结束代码(返回值) $- 使用Set命令设定的Flag一览 $* 所有参 ...

  5. KMP快速字符串匹配

    KMP算法是一种改进的字符串匹配算法,由D.E.Knuth,J.H.Morris和V.R.Pratt同时发现.KMP算法的关键是利用匹配失败后的信息,从错误中吸取经验,尽量减少模式串与主串的匹配次数以 ...

  6. jQuery extend 实现代码封装

    jQuery 有两种方式封装代码 $.extend 和 $.fn.extend,我们也称为封装插件 $.extend DEMO // 封装 $.extend({ say:function(option ...

  7. Java 操作符

    子系统的特点 instanceof 操作符 Animal类是Dog的直接父类,Creature类和Object类是Dog的间接父类,因此 Dog dog=new Dog(); System.out.p ...

  8. Javascript模块化编程(二):AMD规范 作者: 阮一峰

    声明:转载自阮一峰的网络日志 这个系列的第一部分介绍了Javascript模块的基本写法,今天介绍如何规范地使用模块. (接上文) 七.模块的规范 先想一想,为什么模块很重要? 因为有了模块,我们就可 ...

  9. LeetCode Read N Characters Given Read4

    原题链接在这里:https://leetcode.com/problems/read-n-characters-given-read4/ 题目: The API: int read4(char *bu ...

  10. elasticsearch使用操作部分

    本片文章记录了elasticsearch概念.特点.集群.插件.API使用方法. 1.elasticsearch的概念及特点.概念:elasticsearch是一个基于lucene的搜索服务器.luc ...