Range Sum Query 2D - Mutable & Immutable
Range Sum Query 2D - Mutable
Given a 2D matrix matrix, find the sum of the elements inside the rectangle defined by its upper left corner (row1, col1) and lower right corner (row2, col2).

The above rectangle (with the red border) is defined by (row1, col1) = (2, 1) and (row2, col2) = (4, 3), which contains sum = 8.
Example:
Given matrix = [
[3, 0, 1, 4, 2],
[5, 6, 3, 2, 1],
[1, 2, 0, 1, 5],
[4, 1, 0, 1, 7],
[1, 0, 3, 0, 5]
]
sumRegion(2, 1, 4, 3) -> 8
update(3, 2, 2)
sumRegion(2, 1, 4, 3) -> 10
Note:
The matrix is only modifiable by the update function.
You may assume the number of calls to update and sumRegion function is distributed evenly.
You may assume that row1 ≤ row2 and col1 ≤ col2.
分析:https://segmentfault.com/a/1190000004238792
注意这道题说明了"calls to update and sumRegion function is distributed evenly"。我们可以先不考虑这道题的限制,根据这个两个方法使用次数分情况讨论:
update多,sumRegion少
这种情况比较简单,我们可以直接复制矩阵,update的时候直接update对应点的值即可,sumRegion直接遍历指定范围内的值就可以了。update: O(1), sumRegion: O(mn)update少,sumRegion多。
我们可以不复制整个矩阵,而是在每个点处存(0, 0)到该的长方形内所有元素的和,这样的话,sumRegion的复杂度会很低,update的时候我们需要update所有受影响的sum。update: O(mn), sumRegion: O(1)update多,sumRegion多
(本题情况)
我们可以每个点存对于该行,起始点到该点为止的sum。这样话,update的话,我们只需要update该行受影响的sum即可。sumRegion的话,我们只需要遍历相应行,加上不同行的对应sum即可。update: O(n), sumRegion: O(m)
当然,对于这种类型的题目,使用一些高级数据结构会更时间复杂度会更低,能达到logn,如二维线段树。这里只涉及基本的数据结构,尽量不搞复杂。
复杂度:
注:m指行数,n指列数,这里global的矩阵不算各个方法的extra space。
update
time: O(n), space: O(1)
sumRegion
time: O(m), space: O(1)
public class NumMatrix {
int[][] rowSums;
public NumMatrix(int[][] matrix) {
if (matrix.length == )
return;
rowSums = new int[matrix.length][matrix[].length];
// 建rowSums矩阵
for (int i = ; i < matrix.length; i++) {
for (int j = ; j < matrix[].length; j++) {
rowSums[i][j] = matrix[i][j] + (j == ? : rowSums[i][j - ]);
}
}
}
public void update(int row, int col, int val) {
// 求出新值与旧值的差
int diff = val - (rowSums[row][col] - (col == ? : rowSums[row][col - ]));
// 更新该行受影响的sum
for (int j = col; j < rowSums[].length; j++) {
rowSums[row][j] += diff;
}
}
public int sumRegion(int row1, int col1, int row2, int col2) {
int res = ;
// 逐行求和,每行的相应和为两sum相减
for (int i = row1; i <= row2; i++) {
res += rowSums[i][col2] - (col1 == ? :rowSums[i][col1 - ]);
}
return res;
}
}
// Your NumMatrix object will be instantiated and called as such:
// NumMatrix numMatrix = new NumMatrix(matrix);
// numMatrix.sumRegion(0, 1, 2, 3);
// numMatrix.update(1, 1, 10);
// numMatrix.sumRegion(1, 2, 3, 4);
Range Sum Query 2D - Mutable & Immutable
就是没有update操作,这样的话,我们直接找出0,0 到每个点的和即可。
public class NumMatrix {
int[][] matrix;
public NumMatrix(int[][] m) {
matrix = m;
if (m == null || m.length == || m[].length == ) return;
for (int i = ; i < matrix[].length; i++) {
matrix[][i] += matrix[][i - ];
}
for (int i = ; i < matrix.length; i++) {
matrix[i][] += matrix[i - ][];
}
for (int i = ; i < matrix.length; i++) {
for (int j = ; j < matrix[].length; j++) {
matrix[i][j] += matrix[i - ][j] + matrix[i][j - ] - matrix[i - ][j - ];
}
}
}
public int sumRegion(int row1, int col1, int row2, int col2) {
if (matrix == null) return ;
if (row1 == && col1 == ) return matrix[row2][col2];
if (row1 == ) return matrix[row2][col2] - matrix[row2][col1 - ];
if (col1 == ) return matrix[row2][col2] - matrix[row1 - ][col2];
return matrix[row2][col2] - matrix[row1 - ][col2] - matrix[row2][col1 - ] + matrix[row1 - ][col1 - ];
}
}
// Your NumMatrix object will be instantiated and called as such:
// NumMatrix numMatrix = new NumMatrix(matrix);
// numMatrix.sumRegion(0, 1, 2, 3);
// numMatrix.sumRegion(1, 2, 3, 4);
Range Sum Query 2D - Mutable & Immutable的更多相关文章
- [Locked] Range Sum Query 2D - Mutable
Range Sum Query 2D - Mutable Given a 2D matrix matrix, find the sum of the elements inside the recta ...
- [LeetCode] Range Sum Query 2D - Mutable 二维区域和检索 - 可变
Given a 2D matrix matrix, find the sum of the elements inside the rectangle defined by its upper lef ...
- Leetcode: Range Sum Query 2D - Mutable && Summary: Binary Indexed Tree
Given a 2D matrix matrix, find the sum of the elements inside the rectangle defined by its upper lef ...
- LeetCode Range Sum Query 2D - Mutable
原题链接在这里:https://leetcode.com/problems/range-sum-query-2d-mutable/ 题目: Given a 2D matrix matrix, find ...
- 308. Range Sum Query 2D - Mutable
题目: Given a 2D matrix matrix, find the sum of the elements inside the rectangle defined by its upper ...
- LeetCode 308. Range Sum Query 2D - Mutable
原题链接在这里:https://leetcode.com/problems/range-sum-query-2d-mutable/ 题目: Given a 2D matrix matrix, find ...
- [Swift]LeetCode308. 二维区域和检索 - 可变 $ Range Sum Query 2D - Mutable
Given a 2D matrix matrix, find the sum of the elements inside the rectangle defined by its upper lef ...
- [LeetCode] Range Sum Query 2D - Immutable 二维区域和检索 - 不可变
Given a 2D matrix matrix, find the sum of the elements inside the rectangle defined by its upper lef ...
- [LeetCode] Range Sum Query - Immutable & Range Sum Query 2D - Immutable
Range Sum Query - Immutable Given an integer array nums, find the sum of the elements between indice ...
随机推荐
- HTTP错误404.13 - Not Found 请求筛选模块被配置为拒绝超过请求内容长度的请求
http://www.cnblogs.com/JKqingxinfeng/archive/2012/10/29/2744663.html HTTP错误404.13 - Not Found 请求筛选模块 ...
- Nginx + FastCGI 程序(C/C++) 搭建高性能web service的Demo及部署发布
FastCGI编程包括四部分:初始化编码.接收请求循环.响应内容.响应结束循环. FCGX_Request request; FCGX_Init(); ); FCGX_InitRequest(& ...
- SCWS分词扩展在WINDOWS下的安装方法
安装之前先确认您是否拥有主机的安装权限,否则无法进行安装,安装步骤如下: 1. 根据您当前用的 PHP 版本,下载相应已编译好的 php_scws.dll 扩展库. 目前支持以下版本 [PHP-4 ...
- Python之路【第七篇续】:进程、线程、协程
Socket Server模块 SocketServer内部使用 IO多路复用 以及 “多线程” 和 “多进程” ,从而实现并发处理多个客户端请求的Socket服务端.即:每个客户端请求连接到服务器时 ...
- jQuery 互相调用iframe页面中js的方法
1,子iframe内调用父类函数方法: window.parent.func(); 2,子Iframe中获取父界面的元素: $("#xx", window.parent.docum ...
- Elasticsearch-PHP 索引操作(转)
索引操作 本节通过客户端来介绍一下索引API的各种操作.索引操作包含任何管理索引本身(例如,创建索引,删除索引,更改映射等等). 我们通过一些常见的操作的代码片段来介绍,然后在表格中列出剩下的方法.R ...
- Yii2.0中文开发向导——Yii2中多表关联查询(join、joinwith)(转)
我们用实例来说明这一部分 表结构 现在有客户表.订单表.图书表.作者表, 客户表Customer (id customer_name) 订单表Order (id order_ ...
- Cucumber
http://www.ibm.com/developerworks/library/a-automating-ria/ Cucumber is a testing framework that hel ...
- CSS实现底部固定
html代码结构 <body> <div class="wrap"> <div class="head"></div& ...
- 【9-7】XML学习笔记01
Tips XML标签大小写敏感: XML文件一般使用国际化通用的编码“utf-8”,所以平时看到的XML文件的头部都会有这样的代码: <?xml version="1.0" ...