Range Sum Query 2D - Mutable

Given a 2D matrix matrix, find the sum of the elements inside the rectangle defined by its upper left corner (row1, col1) and lower right corner (row2, col2).

The above rectangle (with the red border) is defined by (row1, col1) = (2, 1) and (row2, col2) = (4, 3), which contains sum = 8.

Example:

Given matrix = [
[3, 0, 1, 4, 2],
[5, 6, 3, 2, 1],
[1, 2, 0, 1, 5],
[4, 1, 0, 1, 7],
[1, 0, 3, 0, 5]
] sumRegion(2, 1, 4, 3) -> 8
update(3, 2, 2)
sumRegion(2, 1, 4, 3) -> 10

Note:

  1. The matrix is only modifiable by the update function.

  2. You may assume the number of calls to update and sumRegion function is distributed evenly.

  3. You may assume that row1 ≤ row2 and col1 ≤ col2.

分析:https://segmentfault.com/a/1190000004238792

注意这道题说明了"calls to update and sumRegion function is distributed evenly"。我们可以先不考虑这道题的限制,根据这个两个方法使用次数分情况讨论:

  • update多,sumRegion少
    这种情况比较简单,我们可以直接复制矩阵,update的时候直接update对应点的值即可,sumRegion直接遍历指定范围内的值就可以了。

    update: O(1), sumRegion: O(mn)
  • update少,sumRegion多。
    我们可以不复制整个矩阵,而是在每个点处存(0, 0)到该的长方形内所有元素的和,这样的话,sumRegion的复杂度会很低,update的时候我们需要update所有受影响的sum。

    update: O(mn), sumRegion: O(1)
  • update多,sumRegion多(本题情况)
    我们可以每个点存对于该行,起始点到该点为止的sum。这样话,update的话,我们只需要update该行受影响的sum即可。sumRegion的话,我们只需要遍历相应行,加上不同行的对应sum即可。

    update: O(n), sumRegion: O(m)

当然,对于这种类型的题目,使用一些高级数据结构会更时间复杂度会更低,能达到logn,如二维线段树。这里只涉及基本的数据结构,尽量不搞复杂。

复杂度:

注:m指行数,n指列数,这里global的矩阵不算各个方法的extra space。

update

time: O(n), space: O(1)

sumRegion

time: O(m), space: O(1)

 public class NumMatrix {
int[][] rowSums; public NumMatrix(int[][] matrix) {
if (matrix.length == )
return;
rowSums = new int[matrix.length][matrix[].length]; // 建rowSums矩阵
for (int i = ; i < matrix.length; i++) {
for (int j = ; j < matrix[].length; j++) {
rowSums[i][j] = matrix[i][j] + (j == ? : rowSums[i][j - ]);
}
}
} public void update(int row, int col, int val) {
// 求出新值与旧值的差
int diff = val - (rowSums[row][col] - (col == ? : rowSums[row][col - ])); // 更新该行受影响的sum
for (int j = col; j < rowSums[].length; j++) {
rowSums[row][j] += diff;
}
} public int sumRegion(int row1, int col1, int row2, int col2) {
int res = ; // 逐行求和,每行的相应和为两sum相减
for (int i = row1; i <= row2; i++) {
res += rowSums[i][col2] - (col1 == ? :rowSums[i][col1 - ]);
}
return res;
}
} // Your NumMatrix object will be instantiated and called as such:
// NumMatrix numMatrix = new NumMatrix(matrix);
// numMatrix.sumRegion(0, 1, 2, 3);
// numMatrix.update(1, 1, 10);
// numMatrix.sumRegion(1, 2, 3, 4);

Range Sum Query 2D - Mutable & Immutable

就是没有update操作,这样的话,我们直接找出0,0 到每个点的和即可。

 public class NumMatrix {
int[][] matrix; public NumMatrix(int[][] m) {
matrix = m;
if (m == null || m.length == || m[].length == ) return;
for (int i = ; i < matrix[].length; i++) {
matrix[][i] += matrix[][i - ];
} for (int i = ; i < matrix.length; i++) {
matrix[i][] += matrix[i - ][];
} for (int i = ; i < matrix.length; i++) {
for (int j = ; j < matrix[].length; j++) {
matrix[i][j] += matrix[i - ][j] + matrix[i][j - ] - matrix[i - ][j - ];
}
}
} public int sumRegion(int row1, int col1, int row2, int col2) {
if (matrix == null) return ; if (row1 == && col1 == ) return matrix[row2][col2];
if (row1 == ) return matrix[row2][col2] - matrix[row2][col1 - ];
if (col1 == ) return matrix[row2][col2] - matrix[row1 - ][col2]; return matrix[row2][col2] - matrix[row1 - ][col2] - matrix[row2][col1 - ] + matrix[row1 - ][col1 - ];
}
} // Your NumMatrix object will be instantiated and called as such:
// NumMatrix numMatrix = new NumMatrix(matrix);
// numMatrix.sumRegion(0, 1, 2, 3);
// numMatrix.sumRegion(1, 2, 3, 4);

Range Sum Query 2D - Mutable & Immutable的更多相关文章

  1. [Locked] Range Sum Query 2D - Mutable

    Range Sum Query 2D - Mutable Given a 2D matrix matrix, find the sum of the elements inside the recta ...

  2. [LeetCode] Range Sum Query 2D - Mutable 二维区域和检索 - 可变

    Given a 2D matrix matrix, find the sum of the elements inside the rectangle defined by its upper lef ...

  3. Leetcode: Range Sum Query 2D - Mutable && Summary: Binary Indexed Tree

    Given a 2D matrix matrix, find the sum of the elements inside the rectangle defined by its upper lef ...

  4. LeetCode Range Sum Query 2D - Mutable

    原题链接在这里:https://leetcode.com/problems/range-sum-query-2d-mutable/ 题目: Given a 2D matrix matrix, find ...

  5. 308. Range Sum Query 2D - Mutable

    题目: Given a 2D matrix matrix, find the sum of the elements inside the rectangle defined by its upper ...

  6. LeetCode 308. Range Sum Query 2D - Mutable

    原题链接在这里:https://leetcode.com/problems/range-sum-query-2d-mutable/ 题目: Given a 2D matrix matrix, find ...

  7. [Swift]LeetCode308. 二维区域和检索 - 可变 $ Range Sum Query 2D - Mutable

    Given a 2D matrix matrix, find the sum of the elements inside the rectangle defined by its upper lef ...

  8. [LeetCode] Range Sum Query 2D - Immutable 二维区域和检索 - 不可变

    Given a 2D matrix matrix, find the sum of the elements inside the rectangle defined by its upper lef ...

  9. [LeetCode] Range Sum Query - Immutable & Range Sum Query 2D - Immutable

    Range Sum Query - Immutable Given an integer array nums, find the sum of the elements between indice ...

随机推荐

  1. mssql注入

    <%@ Page Language="C#" AutoEventWireup="true" %> <%@ Import Namespace=& ...

  2. Drupal 7.31SQL注入getshell漏洞利用详解及EXP

    0x00 这个漏洞威力确实很大,而且Drupal用的也比较多,使用Fuzzing跑字典应该可以扫出很多漏洞主机,但是做批量可能会对对方网站造成很大的损失,所以我也就只是写个Exp不再深入下去. 0x0 ...

  3. 使用session防止重复提交

    一.表单重复提交的常见应用场景 <%@ page language="java" import="java.util.*" pageEncoding=&q ...

  4. Python开发【第十九篇】:Python操作MySQL

    本篇对于Python操作MySQL主要使用两种方式: 原生模块 pymsql ORM框架 SQLAchemy pymsql pymsql是Python中操作MySQL的模块,其使用方法和MySQLdb ...

  5. QT笔记

    1.菜单栏上的弹出窗口 void MainWindow::on_new_action_triggered() {     MyDialog myDialog;//MyDialog是一个ui     m ...

  6. 由Collections.unmodifiableList引发的重构

    原文  http://www.cnblogs.com/persist-confident/p/4516741.html 今天阅读源码的时候,无意中看到了Collections.unmodifiable ...

  7. [Js/Jquery]jquery插件开发

    摘要 上篇文章简单学习了js自调用方法.今天就趁热打铁,学一学怎么编写一个jquery插件. JQuery 参考地址:http://www.cnblogs.com/playerlife/archive ...

  8. php正则表达式匹配用户名规则:由字母开头的6-16位字母和数字组成的字符串

    $pattern = '/^[a-zA-Z]{1}[a-zA-Z0-9]{5,15}$/i';

  9. 通过Canvas及File API缩放并上传图片完整示例

    <!DOCTYPE html> <html> <head> <title>通过Canvas及File API缩放并上传图片</title> ...

  10. 此请求的查询字符串的长度超过配置的 maxQueryStringLength 值 --不仅wen.fonfig一个地方需要设置

    提示已经很明确了... 搜出来的都是: <system.webServer> <security> <requestFiltering> <requestLi ...