原数据如下所示:

IMAGETYPE count
.?+? 1713
Jh.5? 100
.??U 38
.11.1 1
.13.1 1
.15.11 2

我需要对数据内的带有特殊符号,且第一个逗号前的数据进行清洗。

分析清洗条件:

1.含有字符如:?,<,>,),(,=,# 的数据全部清洗drop

2.第一个逗号前面,得满足条件1)可以带有首字母a或A;2)数字部分不能大于29

分析思路:

1.创建函数,判断字符串,由于用的Series,所以用apply()就可以对每个元素进行判断操作,读进来是一个字符串,如果是dataframe格式,需要使用applymap()才能读到每个元素

2.首先判断读进来的字符串是否含有特殊字符,这里用了一个循环判断

3.然后切割字符串,判断第一个元素是不是空;是不是含有A或a;是不是数字小于29

4.如果不满足上述条件的,都返回 None,方便在dataframe中使用dropna()删除脏数据

完整代码如下:

import pandas as pd
df = pd.read_csv(r'Result_6.csv') def re(x):
list1 = ["-","?","=","@","*","(",">"]
for i in list1:
if i in x:
return None
a = x.split(".")
try:
if a[0] == '':
return None
elif a[0][0] == 'a' or a[0][0] == 'A':
if int(a[0][1:]) > 29:
return None
elif int(a[0]) > 29:
return None
except:
return None
return x df["IMAGETYPE"] = df["IMAGETYPE"].apply(re)
df = df.dropna(axis=0, how="any")
df.to_csv('clean3.csv', encoding='utf-8')

脏数据清洗,pandas.apply()的应用的更多相关文章

  1. [数据清洗]- Pandas 清洗“脏”数据(二)

    概要 了解数据 分析数据问题 清洗数据 整合代码 了解数据 在处理任何数据之前,我们的第一任务是理解数据以及数据是干什么用的.我们尝试去理解数据的列/行.记录.数据格式.语义错误.缺失的条目以及错误的 ...

  2. [数据清洗]- Pandas 清洗“脏”数据(三)

    预览数据 这次我们使用 Artworks.csv ,我们选取 100 行数据来完成本次内容.具体步骤: 导入 Pandas 读取 csv 数据到 DataFrame(要确保数据已经下载到指定路径) D ...

  3. [数据清洗]-Pandas 清洗“脏”数据(一)

    概要 准备工作 检查数据 处理缺失数据 添加默认值 删除不完整的行 删除不完整的列 规范化数据类型 必要的转换 重命名列名 保存结果 更多资源 Pandas 是 Python 中很流行的类库,使用它可 ...

  4. pandas apply()函数参数 args

    #!/usr/bin/python import pandas as pd data = {'year':[2000,2001,2002,2001,2002],'value':[1.5,1.7,3.6 ...

  5. pandas,apply并行计算的一个demo

    #!/usr/bin/env python # -*- coding: utf-8 -*- # @Date : 2018-10-11 17:55:26 # @Author : Sheldon (thi ...

  6. pandas.apply()函数

    1.介绍 apply函数是pandas里面所有函数中自由度最高的函数.该函数如下: DataFrame.apply(func, axis=0, broadcast=False, raw=False, ...

  7. 学习pandas apply方法,看这一篇就够了,你该这么学,No.10

    最近好忙啊,好忙啊,忙的写不动博客了 时间过得飞快 一晃,一周就过去了 本着不进步就倒退的性格 我成功的在技术上面划水了一周 今天要学习的还是groupby的高级进阶 说是高级,其实就是比初级复杂了一 ...

  8. pandas apply 添加进度条

    Way:from tqdm import tqdmimport pandas as pdtqdm.pandas(desc='pandas bar')df['title_content'] = df.p ...

  9. [数据清洗]-使用 Pandas 清洗“脏”数据

    概要 准备工作 检查数据 处理缺失数据 添加默认值 删除不完整的行 删除不完整的列 规范化数据类型 必要的转换 重命名列名 保存结果 更多资源 Pandas 是 Python 中很流行的类库,使用它可 ...

随机推荐

  1. 图解|用好MySQL索引,你需要知道的一些事情

    我是蝉沐风. 这一篇文章来聊一聊如何用好MySQL索引. 为了更好地进行解释,我创建了一个存储引擎为InnoDB的表user_innodb,并批量初始化了500W+条数据.包含主键id.姓名字段(na ...

  2. Kubernetes系列(三) Deployment

    作者: LemonNan 原文地址: https://juejin.im/post/6865672466939150349/ Kubernetes 系列 Kubernetes系列(一) Pod Kub ...

  3. linux 环境变量设置(临时 + 永久)

    临时设置: 1.直接用export命令: #export PATH=$PATH:/home/xyz/Tesseract/bintesseract可执行文件目录 #export LD_LIBRARY_P ...

  4. linux下查看文件编码及修改编码介绍

    1.在Vim中可以直接查看文件编码:set fileencoding即可显示文件编码格式.如果你只是想查看其它编码格式的文件或者想解决用Vim查看文件乱码的问题,那么你可以在~/.vimrc 文件中添 ...

  5. 爬虫系列之Scrapy框架

    一 scrapy框架简介 1 介绍 (1) 什么是Scrapy? Scrapy是一个为了爬取网站数据,提取结构性数据而编写的应用框架,非常出名,非常强悍.所谓的框架就是一个已经被集成了各种功能(高性能 ...

  6. python+pytest接口自动化(12)-自动化用例编写思路 (使用pytest编写一个测试脚本)

    经过之前的学习铺垫,我们尝试着利用pytest框架编写一条接口自动化测试用例,来厘清接口自动化用例编写的思路. 我们在百度搜索天气查询,会出现如下图所示结果: 接下来,我们以该天气查询接口为例,编写接 ...

  7. jvm-learning-类加载子系统

    类加载子系统的作用 类加载器ClassLoader角色 类的加载过程(广义加载)  加载  加载.class文件的方式 连接Linker 初始化  注意:如果类种没有变量赋值动作和静态代码块的语句是不 ...

  8. 当一个线程进入一个对象的 synchronized 方法 A 之后, 其它线程是否可进入此对象的 synchronized 方法 B?

    不能.其它线程只能访问该对象的非同步方法,同步方法则不能进入.因为非静 态方法上的 synchronized 修饰符要求执行方法时要获得对象的锁,如果已经进入 A 方法说明对象锁已经被取走,那么试图进 ...

  9. django CBV 及其装饰器

    #urls.py from django.contrib import admin from django.urls import path, re_path from app01 import vi ...

  10. 在VisualStudio调试器中使用内存窗口和查看内存分布

    调试模式下内存窗口的使用 在调试期间,"内存"窗口显示应用使用的内存空间.调试器窗口(如"监视"."自动"."局部变量" ...