Description

给定 \(3\) 个同心圆,半径分别为 \(r1,r2,r3\) ,三个点分别随机分布在三个圆上,求这个三角形期望下的面积。

Solution

首先可以固定 \(A\) 点,枚举 \(B\) 点。

对于一个固定的 \(AB\) ,我们可以求出线段长度 \(L\) 以及它与圆心的距离 \(H\) 和夹角 \(\alpha\) ,显然有 \(alpha < \frac{\pi}{2}\) 。

接着通过积分求出 \(C\) 点运动时这个三角形的期望高,我们将其分成三部分。

第一部分:

\[sum=\int_{0}^{\pi}(H+r3\times sin(x))dx=\pi H + r3\times \int_{0}^{\pi}sin(x)dx=\pi H+2\times r3
\]

第二部分:

\[sum=2\int_{0}^{\alpha}(H-r3\times sin(x))dx=2(H\alpha - r3\int_{0}^{\alpha}sin(x)dx)=2(\alpha H +r3\times cos(\alpha)-r3)
\]

第三部分:

\[sum=\int_{\alpha}^{\pi-\alpha}(r3\times sin(x)-H)dx=r3\int_{\alpha}^{\pi-\alpha}sin(x)dx-(\pi-2\alpha)H=2r3\times cos(\alpha)-(\pi-2\alpha)H
\]

合并在一起,得:

\[sum=\pi H+2\times r3+2(\alpha H +r3\times cos(\alpha)-r3)+2r3\times cos(\alpha)-(\pi-2\alpha)H=4r3\times cos(\alpha)+4\alpha\times H
\]

所以,期望高度为 \(h=\frac{4r3\times cos(\alpha)+4\alpha\times H}{2\pi}\) ,故期望三角形面积为 \(\frac{h\times L}{2}\)

我们可以在圆周上均匀选取 \(1000\) 个 \(B\) ,这样做答案近似度极高,如只保留一位小数精度足矣。

时间复杂度:\(O(1000T)\)

Code

提交记录

// Author: wlzhouzhuan
#pragma GCC optimize(2)
#pragma GCC optimize(3)
#include <bits/stdc++.h>
using namespace std; #define ll long long
#define ull unsigned long long
#define rint register int
#define rep(i, l, r) for (rint i = l; i <= r; i++)
#define per(i, l, r) for (rint i = l; i >= r; i--)
#define mset(s, _) memset(s, _, sizeof(s))
#define pb push_back
#define pii pair <int, int>
#define mp(a, b) make_pair(a, b)
#define debug(x) cerr << #x << " = " << x << '\n';
#define pll pair <ll, ll> inline int read() {
int x = 0, neg = 1; char op = getchar();
while (!isdigit(op)) { if (op == '-') neg = -1; op = getchar(); }
while (isdigit(op)) { x = 10 * x + op - '0'; op = getchar(); }
return neg * x;
}
inline void print(int x) {
if (x < 0) { putchar('-'); x = -x; }
if (x >= 10) print(x / 10);
putchar(x % 10 + '0');
} const double eps = 1e-8;
const double PI = acos(-1.0); double Sin[1005], Cos[1005];
double r1, r2, r3; double sqr(double x) { return x * x; }
void solve() {
cin >> r1 >> r2 >> r3;
if (r1 > r2) swap(r1, r2);
if (r1 > r2) swap(r1, r3);
if (r2 > r3) swap(r2, r3);
double ans = 0.0;
for (int i = 1; i <= 1000; i++) {
// B 坐标
double X = r2 * Cos[i], Y = r2 * Sin[i];
double L = sqrt(sqr(X - r1) + sqr(Y));
double H = Y / L * r1;
double alpha = asin(H / r3);
double h = (4.0 * r3 * cos(alpha) + 4.0 * alpha * H) / (2.0 * PI);
ans += h * L / 2.0;
}
ans /= 1000.0;
cout << fixed << setprecision(1) << ans << '\n';
} int main() {
ios::sync_with_stdio(false), cin.tie(0);
int T;
cin >> T;
for (int i = 1; i <= 1000; i++) {
Sin[i] = sin(2.0 * PI / 1000.0 * i);
Cos[i] = cos(2.0 * PI / 1000.0 * i);
}
while (T--) solve();
return 0;
}

牛客多校赛2K Keyboard Free的更多相关文章

  1. 2019牛客多校赛第一场 补题 I题

    I题  Points Division 题意: 给你n个点,每个点有坐标(xi,yi)和属性(ai,bi),将点集划分为两个集合, 任意 A 集合的点 i 和 B 集合点 j, 不允许 xi > ...

  2. 2019牛客多校第一场 I Points Division(动态规划+线段树)

    2019牛客多校第一场 I Points Division(动态规划+线段树) 传送门:https://ac.nowcoder.com/acm/contest/881/I 题意: 给你n个点,每个点有 ...

  3. 牛客多校第一场 B Inergratiion

    牛客多校第一场 B Inergratiion 传送门:https://ac.nowcoder.com/acm/contest/881/B 题意: 给你一个 [求值为多少 题解: 根据线代的知识 我们可 ...

  4. 2019牛客多校第二场 A Eddy Walker(概率推公式)

    2019牛客多校第二场 A Eddy Walker(概率推公式) 传送门:https://ac.nowcoder.com/acm/contest/882/A 题意: 给你一个长度为n的环,标号从0~n ...

  5. 牛客多校第三场 F Planting Trees

    牛客多校第三场 F Planting Trees 题意: 求矩阵内最大值减最小值大于k的最大子矩阵的面积 题解: 矩阵压缩的技巧 因为对于我们有用的信息只有这个矩阵内的最大值和最小值 所以我们可以将一 ...

  6. 牛客多校第三场 G Removing Stones(分治+线段树)

    牛客多校第三场 G Removing Stones(分治+线段树) 题意: 给你n个数,问你有多少个长度不小于2的连续子序列,使得其中最大元素不大于所有元素和的一半 题解: 分治+线段树 线段树维护最 ...

  7. 牛客多校第四场sequence C (线段树+单调栈)

    牛客多校第四场sequence C (线段树+单调栈) 传送门:https://ac.nowcoder.com/acm/contest/884/C 题意: 求一个$\max {1 \leq l \le ...

  8. 牛客多校第3场 J 思维+树状数组+二分

    牛客多校第3场 J 思维+树状数组+二分 传送门:https://ac.nowcoder.com/acm/contest/883/J 题意: 给你q个询问,和一个队列容量f 询问有两种操作: 0.访问 ...

  9. 2019牛客多校第八场 F题 Flowers 计算几何+线段树

    2019牛客多校第八场 F题 Flowers 先枚举出三角形内部的点D. 下面所说的旋转没有指明逆时针还是顺时针则是指逆时针旋转. 固定内部点的答案的获取 anti(A)anti(A)anti(A)或 ...

随机推荐

  1. H5的audio在ios系统的微信上不能自动播放的问题

    前几天有个需求,要在H5页面中添加背景音乐,本以为很easy,却也踩了一些坑,废话不多说,进入正题: 撸完代码测试的时候才发现在安卓手机上背景音乐可以正常播放,但在iphone里的微信和safari中 ...

  2. throws子句在继承当中overrride时有什么规则

    8.throws子句在继承当中overrride时的规则 马克-to-win:当子类方法override父类方法时,throws子句不能引进新的checked异常.换句话说:子类override方法的 ...

  3. Android 预置APK

    1.   预置apk,使其不可卸载   第一步:      在 "/vendor/huawei/packages/apps" 目录下创建一个对应名称的文件夹.   第二步:   将 ...

  4. ubantu系统之 在桌面添加应用快捷方式

    1. 首先在终端使用命令:sudo nautilus 这个命令会让你用root权限打开文件管理器,输入这个命令然后输入密码确认之后会弹出一个目录窗口;2. 然后我们就要找到目录:/usr/share/ ...

  5. java中Number Type Casting(数字类型强转)的用法

    4.5 Number Type Casting(数字类型强转)隐式 casting(from small to big) byte a = 111; int b = a;显式 casting(from ...

  6. (ICONIP2021)On the Unreasonable Effectiveness of Centroids in Image

    目录 摘要 1.引言 2.提出的方法 2.1 CentroidTripletloss 2.2 聚合表示 3.实验 3.1 数据集 3.2 应用细节 3.3 Fashion检索结果 3.4 行人再识别结 ...

  7. Django框架中settings.py注释

    1 # coding:utf8 2 """ 3 Django settings for DjangoTest project. 4 5 Generated by 'dja ...

  8. 使用 Jenkins 进行持续集成与发布流程图-图解

  9. 以ARM和RISC-V为内核的单片机写寄存器

    我以为这是个很简单的问题,没想到还有一些初学者不会.可能他们也是跟我一样是直接学的如何操作单片机并没有学微机原理么. ARM和RISC-V的机器的系统架构都是哈佛结构的,意思是程序存储器.数据存储器和 ...

  10. 【面试普通人VS高手系列】HashMap是怎么解决哈希冲突的?

    常用数据结构基本上是面试必问的问题,比如HashMap.LinkList.ConcurrentHashMap等. 关于HashMap,有个学员私信了我一个面试题说: "HashMap是怎么解 ...