建议改为 省 选 原 题

题意:求所有生成树的边权 \(\gcd\) 之和。

看到 \(\gcd\) 立刻想反演。

\[\sum_T\gcd_{e \in T}e_v
\]

这里设 \(E=e_v(e \in T)\)

\[\sum_T\gcd_E
\]
\[\sum_T\sum_{d \mid e(e \in E)}\varphi(d)
\]
\[\sum_{d=1}^{\infty}\sum_{T,T \in E(e_v \in E(d \mid e_v))}
\]

也就是说只需要求边权为 \(d\) 的倍数的边构成的图的生成树个数即可,使用矩阵树。

稍微剪枝一下,复杂度大概是 \(O(240mn^3+V\log V)\),实测可以通过。

#include<cstdio>
#include<vector>
typedef unsigned ui;
const ui M=1e6+5,mod=1e9+7;
ui n,m,mx,top,G[65][65],u[3005],v[3005],pos[M],pri[M],phi[M];std::vector<ui>id[M];
inline ui Add(const ui&a,const ui&b){
return a+b>=mod?a+b-mod:a+b;
}
inline ui Del(const ui&a,const ui&b){
return b>a?a-b+mod:a-b;
}
inline ui pow(ui a,ui b){
ui ans=1;
for(;b;b>>=1,a=1ull*a*a%mod)if(b&1)ans=1ull*ans*a%mod;
return ans;
}
inline ui Gauss(){
ui i,j,k,d,inv,ans(1);
for(i=1;i^n;++i){
if(!G[i][i])for(j=i+1;j^n;++j)if(G[j][i]){
ans=mod-ans;std::swap(G[i],G[j]);break;
}
inv=pow(G[i][i],mod-2);ans=1ull*ans*G[i][i]%mod;
for(j=i+1;j^n;++j)for(d=1ull*(mod-G[j][i])*inv%mod,k=i;k^n;++k)G[j][k]=(G[j][k]+1ull*d*G[i][k])%mod;
}
return ans;
}
inline ui Solve(const ui&x){
ui i,j;
for(i=1;i^n;++i)for(j=1;j^n;++j)G[i][j]=i^j?mod:0;
for(i=1;(j=i*x)<=mx;++i)for(ui&x:id[j])++G[u[x]][u[x]],++G[v[x]][v[x]],--G[u[x]][v[x]],--G[v[x]][u[x]];
return Gauss();
}
signed main(){
ui i,j,x,S,val,ans;
scanf("%u%u",&n,&m);
for(i=1;i<=n;++i)for(j=1;j<=n;++j)G[i][j]=i^j?mod:0;
for(i=1;i<=m;++i){
scanf("%u%u%u",u+i,v+i,&val);id[val].push_back(i);if(val>mx)mx=val;
++G[v[i]][v[i]];++G[u[i]][u[i]];--G[u[i]][v[i]];--G[v[i]][u[i]];
}
ans=Gauss();
for(i=2;i<=mx;++i){
if(!pos[i])pos[pri[++top]=i]=top,phi[i]=i-1;S=0;
for(j=1;(x=i*j)<=mx;++j)S+=id[x].size();if(S>=n-1)ans=(ans+1ull*phi[i]*Solve(i))%mod;
for(j=1;j<=pos[i]&&(x=i*pri[j])<=mx;++j)phi[x]=phi[i]*(pri[j]-((pos[x]=j)!=pos[i]));
}
printf("%u",ans);
}

LGP3790题解的更多相关文章

  1. 2016 华南师大ACM校赛 SCNUCPC 非官方题解

    我要举报本次校赛出题人的消极出题!!! 官方题解请戳:http://3.scnuacm2015.sinaapp.com/?p=89(其实就是一堆代码没有题解) A. 树链剖分数据结构板题 题目大意:我 ...

  2. noip2016十连测题解

    以下代码为了阅读方便,省去以下头文件: #include <iostream> #include <stdio.h> #include <math.h> #incl ...

  3. BZOJ-2561-最小生成树 题解(最小割)

    2561: 最小生成树(题解) Time Limit: 10 Sec  Memory Limit: 128 MBSubmit: 1628  Solved: 786 传送门:http://www.lyd ...

  4. Codeforces Round #353 (Div. 2) ABCDE 题解 python

    Problems     # Name     A Infinite Sequence standard input/output 1 s, 256 MB    x3509 B Restoring P ...

  5. 哈尔滨理工大学ACM全国邀请赛(网络同步赛)题解

    题目链接 提交连接:http://acm-software.hrbust.edu.cn/problemset.php?page=5 1470-1482 只做出来四道比较水的题目,还需要加强中等题的训练 ...

  6. 2016ACM青岛区域赛题解

    A.Relic Discovery_hdu5982 Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 65536/65536 K (Jav ...

  7. poj1399 hoj1037 Direct Visibility 题解 (宽搜)

    http://poj.org/problem?id=1399 http://acm.hit.edu.cn/hoj/problem/view?id=1037 题意: 在一个最多200*200的minec ...

  8. 网络流n题 题解

    学会了网络流,就经常闲的没事儿刷网络流--于是乎来一发题解. 1. COGS2093 花园的守护之神 题意:给定一个带权无向图,问至少删除多少条边才能使得s-t最短路的长度变长. 用Dijkstra或 ...

  9. CF100965C题解..

    求方程 \[ \begin{array}\\ \sum_{i=1}^n x_i & \equiv & a_1 \pmod{p} \\ \sum_{i=1}^n x_i^2 & ...

随机推荐

  1. JSP中的请求转发与重定向

    在说请求转发和重定向之前,得了解下JSP九大内置对象中的response和request response:将服务器端数据发送到客户端,可通过在客户端浏览器中显示,用户浏览页面的重定向以及在客户端创建 ...

  2. 有关OPenCV的几个库函数的使用

    转载请注明来源:https://www.cnblogs.com/hookjc/ 1) IplImage* cvCreateImage( CvSize size, int depth, int chan ...

  3. ajax、axios、fetch区别及优缺点

    将jQuery的ajax.axios和fetch做个简单的比较,所谓仁者见仁智者见智,最终使用哪个还是自行斟酌 1.jQuery ajax $.ajax({ type: 'POST', url: ur ...

  4. ldconfig及LD_LIBRARY_PATH

    ldconfig是一个动态链接库管理命令,为了让动态链接库为系统所共享,还需运行动态链接库的管理命令:ldconfig.ldconfig 命令的用途,主要是在默认搜寻目录 (/lib和/usr/lib ...

  5. EasyExcel小试牛刀

    原创:转载需注明原创地址 https://www.cnblogs.com/fanerwei222/p/12029411.html 某种偶然的机会遇到了这个插件, 听说很牛X, 我之前也不知道, 不过还 ...

  6. 配置phpmemcache扩展,Loaded Configuration File (none)

    首先我来描述问题: 编译安装完php的扩展库memcache后,在php.ini文件中添加了memcache.so的配置文件 extension=/usr/local/php5.6.27/lib/ph ...

  7. iOS 七大手势之轻拍,长按,旋转手势识别器方法-赵小波

    一.监听触摸事件的做法 如果想监听一个view上面的触摸事件,之前的做法通常是:先自定义一个view,然后再实现view的touches方法,在方法内部实现具体处理代码 通过touches方法监听vi ...

  8. K8s二进制部署单节点 master组件 node组件 ——头悬梁

    K8s二进制部署单节点   master组件 node组件   --头悬梁 1.master组件部署 2.node   组件部署 k8s集群搭建: etcd集群 flannel网络插件 搭建maste ...

  9. 生成树协议(STP)的精髓知识

    STP生成树协议   1.STP介绍 2.STP生成树算法 1.STP  -   Spanning tree protocol (生成树协议)是逻辑上断开环路,防止广播风暴的产生.当线路故障,阻塞接口 ...

  10. 一次Kafka内存泄露排查经过

    一.现象 服务部署后内存总体呈上升趋势 二.排查过程 通过go tool pprof收集了三天内存数据 2月11号数据: 2月14号数据: 2月15号数据: 可以看到newPartitionProdu ...