分层设计

ODS(Operational Data Store):数据运营层 

“面向主题的”数据运营层,也叫ODS层,是最接近数据源中数据的一层,数据源中的数据,经过抽取、洗净、传输,也就说传说中的 ETL 之后,装入本层。本层的数据,总体上大多是按照源头业务系统的分类方式而分类的。

一般来讲,为了考虑后续可能需要追溯数据问题,因此对于这一层就不建议做过多的数据清洗工作,原封不动地接入原始数据即可,至于数据的去噪、去重、异常值处理等过程可以放在后面的DWD层来做。

DW(Data Warehouse):数据仓库层

数据仓库层是我们在做数据仓库时要核心设计的一层,在这里,从 ODS 层中获得的数据按照主题建立各种数据模型。DW层又细分为 DWD(Data Warehouse Detail)层、DWM(Data WareHouse Middle)层和DWS(Data Warehouse Service)层。

DWD(Data Warehouse Detail):数据明细层

​ 该层一般保持和ODS层一样的数据粒度,并且提供一定的数据质量保证。同时,为了提高数据明细层的易用性,该层会采用一些维度退化手法,将维度退化至事实表中,减少事实表和维表的关联。

​ 另外,在该层也会做一部分的数据聚合,将相同主题的数据汇集到一张表中,提高数据的可用性。

DWM(Data Warehouse Middle):数据中间层

​ 该层会在DWD层的数据基础上,对数据做轻度的聚合操作,生成一系列的中间表,提升公共指标的复用性,减少重复加工。直观来讲,就是对通用的核心维度进行聚合操作,算出相应的统计指标。

DWS(Data Warehouse Service):数据服务层

​ 又称数据集市或宽表。按照业务划分,如流量、订单、用户等,生成字段比较多的宽表,用于提供后续的业务查询,OLAP分析,数据分发等。

​ 一般来讲,该层的数据表会相对比较少,一张表会涵盖比较多的业务内容,由于其字段较多,因此一般也会称该层的表为宽表。在实际计算中,如果直接从DWD或者ODS计算出宽表的统计指标,会存在计算量太大并且维度太少的问题,因此一般的做法是,在DWM层先计算出多个小的中间表,然后再拼接成一张DWS的宽表。由于宽和窄的界限不易界定,也可以去掉DWM这一层,只留DWS层,将所有的数据在放在DWS亦可。

ADS/APP/DM(Application Data Store/Application/DataMarket):数据应用层/数据集市

​ 在这里,主要是提供给数据产品和数据分析使用的数据,一般会存放在 ES、PostgreSql、Redis等系统中供线上系统使用,也可能会存在 Hive 或者 Druid 中供数据分析和数据挖掘使用。比如我们经常说的报表数据,一般就放在这里。

DIM(Dimension):维表层

维表层主要包含两部分数据:

* 高基数维度数据:一般是用户资料表、商品资料表类似的资料表。数据量可能是千万级或者上亿级别。

* 低基数维度数据:一般是配置表,比如枚举值对应的中文含义,或者日期维表。数据量可能是个位数或者几千几万。

旅游集市

Hive数仓的更多相关文章

  1. 在HUE中将文本格式的数据导入hive数仓中

    今天有一个需求需要将一份文档形式的hft与fdd的城市关系关系的数据导入到hive数仓中,之前没有在hue中进行这项操作(上家都是通过xshell登录堡垒机直接连服务器进行操作的),特此记录一下. - ...

  2. Hive 数仓中常见的日期转换操作

    (1)Hive 数仓中一些常用的dt与日期的转换操作 下面总结了自己工作中经常用到的一些日期转换,这类日期转换经常用于报表的时间粒度和统计周期的控制中 日期变换: (1)dt转日期 to_date(f ...

  3. 使用Oozie中workflow的定时任务重跑hive数仓表的历史分期调度

    在数仓和BI系统的开发和使用过程中会经常出现需要重跑数仓中某些或一段时间内的分区数据,原因可能是:1.数据统计和计算逻辑/口径调整,2.发现之前的埋点数据收集出现错误或者埋点出现错误,3.业务数据库出 ...

  4. Hive数仓之快速入门(二)

    上次已经讲了<Hive数据仓库之快速入门一>不记得的小伙伴可以点击回顾一下,接下来我们再讲Hive数据仓库之快速入门二 DQL hive中的order by.distribute by.s ...

  5. hive数仓客户端界面工具

    1.Hive的官网上介绍了三个可以在Windows中通过JDBC连接HiveServer2的图形界面工具,包括:SQuirrel SQL Client.Oracle SQL Developer以及Db ...

  6. 大数据学习——hive数仓DML和DDL操作

    1 创建一个分区表 create table t_partition001(ip string,duration int) partitioned by(country string) row for ...

  7. 基于Hive进行数仓建设的资源元数据信息统计:Hive篇

    在数据仓库建设中,元数据管理是非常重要的环节之一.根据Kimball的数据仓库理论,可以将元数据分为这三类: 技术元数据,如表的存储结构结构.文件的路径 业务元数据,如血缘关系.业务的归属 过程元数据 ...

  8. 基于Hive进行数仓建设的资源元数据信息统计:Spark篇

    在数据仓库建设中,元数据管理是非常重要的环节之一.根据Kimball的数据仓库理论,可以将元数据分为这三类: 技术元数据,如表的存储结构结构.文件的路径 业务元数据,如血缘关系.业务的归属 过程元数据 ...

  9. 数仓1.4 |业务数仓搭建| 拉链表| Presto

    电商业务及数据结构 SKU库存量,剩余多少SPU商品聚集的最小单位,,,这类商品的抽象,提取公共的内容 订单表:周期性状态变化(order_info) id 订单编号 total_amount 订单金 ...

随机推荐

  1. Vue.js之计算属性(computed)、属性监听(watch)与方法选项(methods)

    vue.js官网:https://cn.vuejs.org/v2/guide/components-registration.html 一.计算属性-computed 1. 作用:能够避免数据冗余,通 ...

  2. LeetCode 每日一题 458. 可怜的小猪

    题目描述 有 buckets 桶液体,其中 正好 有一桶含有毒药,其余装的都是水.它们从外观看起来都一样.为了弄清楚哪只水桶含有毒药,你可以喂一些猪喝,通过观察猪是否会死进行判断.不幸的是,你只有 m ...

  3. Codeforces Round #738 (Div. 2)

    Codeforces Round #738 (Div. 2) 跳转链接 A. Mocha and Math 题目大意 有一个长度为\(n\)的数组 可以进行无数次下面的操作,问操作后数组中的最大值的最 ...

  4. 谷歌CEO桑达尔·皮查伊:区块链可能撼动云计算

    谷歌CEO桑达尔·皮查伊在周二的季度收益电话会议上承认了Web3和区块链的力量. 皮查伊表示,Web3描述了基于区块链的互联网新愿景,区块链是一种分散.安全.透明的技术,支持加密货币网络.不可替代代币 ...

  5. 使用VScode编写Markdown的一些使用技巧

  6. CF1399F Yet Another Segments Subset

    首先注意一下题面要求,使得选出的线段两两要么包含要么不相交,也就是说一条线段可能会出现不相交的几条线段,而这些线段上面也可能继续这样包含线段.然后我们可以发现我们要做的实际上是在这条线段上选取几条线段 ...

  7. Spring @Cacheable 缓存不生效的问题

    最近在项目中使用了Ehcache缓存,使用方式是用Spring提供的 @Cacheable 注解的方式,这种方式简单.快速.方便,推荐使用. 在使用的过程中,遇到了缓存不生效的情况,经过分析处理,总结 ...

  8. 直接引入vue.js和使用vue脚手架的区别?

    脚手架工具搭建的项目是把Vue作为一个模块(如CommonJS规范的模块)对待,在源码中引入vue模块,最终需要用构建工具(如webpack)载入模块,编写代码需要require('vue'). 而直 ...

  9. CentOS7利用yum缓存搭建本地源

    CentOS7利用yum缓存搭建本地源 环境说明 [root@localhost ~]# cat /etc/redhat-release CentOS Linux release 7.6.1810 ( ...

  10. VSCode官方的配置同步方案

    前言 这几天在迁移电脑工作环境,对于VSCode,我实在不想从头做下载插件.配置代码规则这样的事情,于是求助百度,搜索结果靠前的解决方案基本都是使用Setings Sync插件,于是我就从了. 经过好 ...