《Agglomerative clustering of a search engine query log》

论文作者:Doug Beeferman 本文将解读此篇论文,此论文利用搜索日志中的<query,url>类型点击日志,实现忽略目标url内容,基于搜索词条用户的点击数据,聚合相关搜索和连接的算法。(本解读文章个人辛苦之作,请勿随意转载 文章链接 https://www.cnblogs.com/jiaomaster/p/16271663.html)

背景

随着互联网规模的扩大和普及,现在有超过10亿个静态网页(作者所写的年份),一些商业搜索引擎每天处理数以千万计的查询对组织这些数据的自动方法的迫切需求已经发展。为大规模的非结构化数据集带来一定程度的秩序的一种策略是将相似的项分组在一起。本文介绍了一种技术,用于通过Internet搜索从用户事务集合中找到相关查询和相关url的集群。作者列举了一些常用的文档的聚类计算方法,如HAC,k-means,但是这些都基于文档内容,但作者提出了一种基于用户点击数据日志的方法。

点击数据介绍

http协议允许商业搜索引擎记录关于用户的大量信息——发送请求的机器的名称和IP地址、机器上运行的web浏览器的类型、机器的屏幕分辨率,等等。这里,我们只对包含用户提交的查询的字符序列和用户从搜索引擎提供的选项中选择的URL感兴趣。表1列出了来自最近Lycos日志的点击记录(查询,URL)的一小段摘录。



表1:2000年2月某一天Lycos点击记录(用户查询和所选url)的一小段摘录。

算法设计

1.构造二部图 点击转跳二部图介绍

首先我们约定,用户查询词query为Q,Url则为U,构造出的图为G,二部图的query顶点W(白节点),Url顶点为B(黑节点),日志的数据集为C(数据集格式<query,url>)

  • 从数据集C中获取一个独一无二的用户查询词query
  • 从数据集C中获取一个独一无二的用户点击连接url
  • 对每一个唯一的query,在二部图中创建一个W白节点
  • 对每一个唯一的url,在二部图中创建一个B黑节点
  • 如果<query,url>出现过,加给他们节点之间加边

2.节点间的相似度

为了对二部图进行聚合,需要计算每个顶点之间的相似度,引入公式



公式中σ(x,y)表示x和y顶点(黑和黑,白和白),N(x)代表顶点x和另一边顶点的总边数,N(y)代表顶点y和另一边顶点的总边数,所以公式的意思就是,两顶点重合的边和总共的边的比代表相似度

3.对二部图进行聚合

  • 根据2中公式,对所以白顶点之间的相似度(查询词顶点)打分
  • 把两个最相似的白顶点合并
  • 根据2中公式,对所以黑顶点之间的相似度(Url顶点)打分
  • 把两个最相似的黑顶点合并
  • 迭代(重复前面步骤),直到一个条件

    文中没有对停止条件详细规定,只是说到一个最相似的情况,我在下文会提供其他论文的解决办法

算法过程示意图

时间复杂度

算法缺陷

在阅读其它文章,我发现有以下两个缺点

1.没有考虑噪声数据,即用户错误点击

对此问题 W ing Shun Chan 在论文《Query Log Containing Noisy Clickthroughs 》中,给出了优化的相似度计算公式

2.没有给出算法明确停止边界

如果计算的最大相似度度太低,会导致不相关的也被强行聚合,所以,我们通过设置一个阈值来解决

参考文献

[ 1] Doug Beeferman, Adam Berger. Agglomerative Clustering of a Search Engine Query Log[C], Proceedings of the sixth ACM S IGKDD interna2 tional con ference on knowledge discovery and data m ining, pp. 407 416, August 20~23, 2000, Boston, M assachusetts, United States.

[2] W ing Shun Chan, W ai Ting Leung, D ik Lun Lee. Clustering Search En2 gine Query Log Containing Noisy Clickthroughs [C], Proceedings ofthe 2004 International Symposium on App lications and the Internet( SAINTT04).

解读论文《Agglomerative clustering of a search engine query log》,以解决搜索推荐相关问题的更多相关文章

  1. Science论文"Clustering by fast search and find of density peaks"学习笔记

    "Clustering by fast search and find of density peaks"是今年6月份在<Science>期刊上发表的的一篇论文,论文中 ...

  2. 微软的一篇ctr预估的论文:Web-Scale Bayesian Click-Through Rate Prediction for Sponsored Search Advertising in Microsoft’s Bing Search Engine。

    周末看了一下这篇论文,觉得挺难的,后来想想是ICML的论文,也就明白为什么了. 先简单记录下来,以后会继续添加内容. 主要参考了论文Web-Scale Bayesian Click-Through R ...

  3. Science14年的聚类论文——Clustering by fast search and find of density peaks

    欢迎转载,转载请注明:本文出自Bin的专栏blog.csdn.net/xbinworld. 这是一个比较新的聚类方法(文章中没看见作者对其取名,在这里我姑且称该方法为local density clu ...

  4. Clustering and Exploring Search Results using Timeline Constructions (paper2)

    作者:Omar Alonso 会议:CIKM 2009 摘要: 截至目前(2009),通过提取文档中内嵌的时间信息来展现和聚类,这方面的工作并不多. 在这篇文章中,我们将提出一个“小插件”增添到现有的 ...

  5. [DataMining]WEEK1 - text-retrieval and search engine

    What does a computer have to do in order to understand a natural language sentence? What is ambiguit ...

  6. [Search Engine] 搜索引擎分类和基础架构概述

    大家一定不会多搜索引擎感到陌生,搜索引擎是互联网发展的最直接的产物,它可以帮助我们从海量的互联网资料中找到我们查询的内容,也是我们日常学习.工作和娱乐不可或缺的查询工具.之前本人也是经常使用Googl ...

  7. [CareerCup] 10.7 Simplified Search Engine 简单的搜索引擎

    10.7 Imagine a web server for a simplified search engine. This system has 100 machines to respond to ...

  8. 开源搜索 Iveely Search Engine 0.6.0 发布 -- 黎明前的娇嫩

    快两年了,Iveely Search Engine已经走过了5个版本的岁月,虽出生“贫寒”,没有任何开源基金会的支持,没有优秀的“干爹.干妈”,它凭着它的爱好者的支持,0.6.0终于破壳而出,7年前, ...

  9. [0.0]Analysis of Baidu search engine

    Rencently, my two teammates and I is doing a project, a simplified Chinese search engine for childre ...

随机推荐

  1. SpringDataJpa备忘录

    单向多对一关系 //产品类型 一的一方 @Entity public class ProductDir { @Id @GeneratedValue private Long id; private S ...

  2. SQL数据库之“TIMESTAMPDIFF(unit,datetime_expr1,datetime_expr2)”

    一.介绍 样本:TIMESTAMPDIFF(unit,datetime_expr1,datetime_expr2) 解析:TIMESTAMPDIFF(格式,开始时间,结束时间) 二.参数解析 格式: ...

  3. Amaze UI 模版中心上线丨十几款高质量优秀模版免费提供!

    Amaze UI模版中心终于上线了,目前汇聚了包含企业门户.新闻资讯.管理后台等多个领域的模版,全都可以免费下载. Amaze UI模版中心后续还会增加更多的模版以及领域,请各位持续关注. 模版中心的 ...

  4. React中Ref 的使用 React-踩坑记_05

    React中Ref 的使用 React v16.6.3 在典型的React数据流中,props是父组件与其子组件交互的唯一方式.要修改子项,请使用new props 重新呈现它.但是,在某些情况下,需 ...

  5. github 上有趣又实用的前端项目(持续更新,欢迎补充)

    github 上有趣又实用的前端项目(持续更新,欢迎补充) 1. reveal.js: 幻灯片展示框架 一个专门用来做 HTML 幻灯片的框架,支持 HTML 和 Markdown 语法. githu ...

  6. Java到底是编译还是解释型语言?编译和解释型语言有什么区别?

    7.java语言执行过程与方式: 编译型语言: 是指使用专门的编译器.针对特定平台(操作系统)将某种高级语言源程序一次性"翻译"成可被该平台硬件运行的机器码(包括指令和数据),并包 ...

  7. java基础-java异常处理

    异常* A:异常的概述 * 异常就是Java程序在运行过程中出现的错误.* B:异常的分类 * Error:服务器宕机,数据库崩溃等 * ExceptionC:异常的继承体系  * Throwable ...

  8. 【c++】容器的基本操作

    操作\容器 vector list string set stack queue map 插入 push_bcak().insert() push_back() .push_front().inser ...

  9. LeetCode 剑指 Offer 22. 链表中倒数第k个节点

    剑指 Offer 22. 链表中倒数第k个节点 题意 输入一个链表,输出该链表中倒数第k个节点.为了符合大多数人的习惯,本题从1开始计数,即链表的尾节点是倒数第1个节点. ​ 例如,一个链表有 6 个 ...

  10. 虚拟机VMware的安装与Xshell的应用

    先安装VMware 1.安装就按照提示一点点安装就行了 配置网络 打开VMware 这里的IOS映像文件在https://developer.aliyun.com/mirror/里下载 这里用方向键往 ...