Template -「矩阵 - 行列式」
#include <cstdio>
int Abs(int x) { return x < 0 ? -x : x; }
int Max(int x, int y) { return x > y ? x : y; }
int Min(int x, int y) { return x < y ? x : y; }
int read() {
int x = 0, k = 1;
char s = getchar();
while (s < '0' || s > '9') {
if (s == '-')
k = -1;
s = getchar();
}
while ('0' <= s && s <= '9') {
x = (x << 3) + (x << 1) + (s ^ 48);
s = getchar();
}
return x * k;
}
void write(int x) {
if (x < 0) {
putchar('-');
x = -x;
}
if (x > 9)
write(x / 10);
putchar(x % 10 + '0');
}
void print(int x, char c) {
write(x);
putchar(c);
}
const int MAXN = 2e2 + 5;
struct Matrix {
typedef long long LL;
int n, m, mod;
LL w[MAXN][MAXN];
void clear() {
for (int i = 1; i <= n; i++)
for (int j = 1; j <= m; j++) w[i][j] = 0;
}
void init() {
for (int i = 1; i <= n; i++)
for (int j = 1; j <= m; j++)
if (i == j)
w[i][j] = 1;
else
w[i][j] = 0;
}
const Matrix operator*(const Matrix &x) const {
Matrix ans;
ans.n = n;
ans.m = x.m;
for (int i = 1; i <= ans.n; i++)
for (int j = 1; j <= ans.m; j++)
for (int k = 1; k <= m; k++) ans.w[i][j] = (ans.w[i][j] + (w[i][k] * x.w[k][j]) % mod) % mod;
return ans;
}
LL Det() { \\ 这里是 mod 不为质数的行列式求法,若为质数可直接高斯消元。
LL ans = 1;
bool flag;
for (int i = 1; i <= n; i++) {
if (!w[i][i]) {
flag = false;
for (int j = i + 1; j <= n; j++)
if (w[j][i]) {
flag = true;
for (int k = i; k <= m; k++) w[i][k] ^= w[j][k] ^= w[i][k] ^= w[j][k];
ans = -ans;
break;
}
if (!flag)
return 0;
}
for (int j = i + 1; j <= n; j++)
while (w[j][i]) {
LL t = w[i][i] / w[j][i];
for (int k = i; k <= m; k++) {
w[i][k] = (w[i][k] - t * w[j][k]) % mod;
w[i][k] ^= w[j][k] ^= w[i][k] ^= w[j][k];
}
ans = -ans;
}
ans = ans * w[i][i] % mod;
}
return (ans + mod) % mod;
}
}
Template -「矩阵 - 行列式」的更多相关文章
- Template -「整体二分」
写的简单.主要是留给自己做复习资料. 「BZOJ1901」Dynamic Rankings. 给定一个含有 \(n\) 个数的序列 \(a_1,a_2 \dots a_n\),需要支持两种操作: Q ...
- 「BZOJ 1297」「SCOI 2009」迷路「矩阵乘法」
题意 边权\(w \in [1, 9]\)的\(n\)个结点的有向图,图上从\(1\)到\(n\)长度为\(d\)的路径计数,\(n \leq 10\). 题解 如果边权为\(1\)很经典,设\(f[ ...
- Template -「网络流 & 二分图」
EK. 很少用到,知道思想即可. 懒得写封装的屑. queue<int> q; int Cap[MAXN][MAXN], Flow[MAXN][MAXN], Aug[MAXN], fa[M ...
- 【LOJ】#3086. 「GXOI / GZOI2019」逼死强迫症
LOJ#3086. 「GXOI / GZOI2019」逼死强迫症 这个就是设状态为\(S,j\)表示轮廓线为\(S\),然后用的1×1个数为j 列出矩阵转移 这样会算重两个边相邻的,只要算出斐波那契数 ...
- 「AHOI2014/JSOI2014」拼图
「AHOI2014/JSOI2014」拼图 传送门 看到 \(n \times m \le 10^5\) ,考虑根号分治. 对于 \(n < m\) 的情况,我们可以枚举最终矩形的上下边界 \( ...
- 「学习笔记」FFT 快速傅里叶变换
目录 「学习笔记」FFT 快速傅里叶变换 啥是 FFT 呀?它可以干什么? 必备芝士 点值表示 复数 傅立叶正变换 傅里叶逆变换 FFT 的代码实现 还会有的 NTT 和三模数 NTT... 「学习笔 ...
- 「zigbee - 1」工欲善其事必先利其器 - IAR for 8051 IDE customization
最近在实验室做一些 Zigbee 相关的事情,然而一直没在博客上记录啥东西,也不像原来在公司有动力在 Confluence wiki 上扯东扯西.直到前些阵子,跑到 feibit 论坛上(国内较大的一 ...
- 「LOJ2000~2023」各省省选题选做
「LOJ2000~2023」各省省选题选做 「SDOI2017」数字表格 莫比乌斯反演. 「SDOI2017」树点涂色 咕咕咕. 「SDOI2017」序列计数 多项式快速幂. 我们将超过 \(p\) ...
- LOJ #2538. 「PKUWC 2018」Slay the Spire (期望dp)
Update on 1.5 学了 zhou888 的写法,真是又短又快. 并且空间是 \(O(n)\) 的,速度十分优秀. 题意 LOJ #2538. 「PKUWC 2018」Slay the Spi ...
随机推荐
- [游记] pkusc 2021 游记
流水账 Day-4 写了ICPC的一道DP,有点细节,虽然写得有点难受,但挺好玩 Day-3 写了PKUSC2018最水的一题 是随机开的题 Day-2 可以去pkusc了,从今天中午开始停课 刚吃完 ...
- [题解] XOR Problem
题目大意 对于一个整数序列 \(a_{0...5}\),我们定义它的价值为: \(f(a)=max(|a_0-a_3|,|a_1-a_4|,|a_2-a_5|)\oplus a_0 \oplus a_ ...
- python+pytest接口自动化(15)-日志管理模块loguru简介
python自带日志管理模块logging,使用时可进行模块化配置,详细可参考博文Python日志采集(详细). 但logging配置起来比较繁琐,且在多进行多线程等场景下使用时,如果不经过特殊处理, ...
- 一探 Vue 数据响应式原理
一探 Vue 数据响应式原理 本文写于 2020 年 8 月 5 日 相信在很多新人第一次使用 Vue 这种框架的时候,就会被其修改数据便自动更新视图的操作所震撼. Vue 的文档中也这么写道: Vu ...
- 接口测试使用Python装饰器
写接口case时,有时需要对cae做一些共性的操作,最典型的场景如:获取case执行时间.打印log等. 有没有一种办法来集中处理共性操作从而避免在每个case中都写相同的代码(如:每个case都需要 ...
- vs code 终端字体间距过大(全角的样子)
文件-首选项-设置 将 terminal.integrated.fontFamily 配置为 Consolas, 'Courier New', monospace 或其他想要的字体,或者点击齿轮按钮重 ...
- JavaMetaweblogClient,Metaweblog的java实现-从此上传博客实现全平台
目录 1. 什么是Metaweblog? 2. Metaweblog的应用 3. 如何使用Metaweblog 4. 本项目介绍 4.1 metaweblog与java之间的关系映射 4.2 使用Ja ...
- 521. Longest Uncommon Subsequence I - LeetCode
Question 521. Longest Uncommon Subsequence I Solution 题目大意:给两个字符串,找出非共同子串的最大长度 思路:字符串相等就返回-1,不等就返回长度 ...
- Java获取特定区间随机数及产生不重复随机数
问题 有这样一种需求,在这样一个数组中String[] arr = new String[]{"电商", "互联网", "小程序", &qu ...
- autoit 脚本开发踩坑点
原文 1. 获取不到点击 <input type='file'/> 后弹出的window 根本原因是 _IEAction 阻塞,见第4点 解决办法: ;bad code $oIE = _I ...