距离上一次写半导体,已经过了很久了,上次分享了本征半导体的基本概念:
https://zhuanlan.zhihu.com/p/109483580
今天给大家聊聊半导体工业中的基础:PN结与二极管

1、掺杂的半导体

如果将本征半导体进行掺杂处理,我们可以得到P型半导体和N型半导体。如图1-1,P型半导体以空穴作为多数载流子,N型半导体以电子作为多数载流子。如果单纯的对掺杂半导体进行通电,我们会发现半导体的导电能力大大增强了(相对于本征半导体),在相同掺杂浓度的半导体中,N型半导体体的导电能力更强(电子的迁移率大约是空穴迁移率的3倍)。
图1-1 本征半导体与掺杂半导体

2、载流子的扩散与漂移

如果将一个P型半导体和一个N型半导体合在一起,那么由于扩散运动,N型半导体内的电子会跑到P型半导体中和空穴复合;P型半导体的空穴会跑到N型半导体内与电子复合。那么这个时候在结合面的附近P型半导体空轨道被电子填满形成带负电的粒子,而N型半导体失去自由电子,形成带正点的粒子,扩散运动形成了正负粒子构建的内电场。随着扩散深度的加强,内电场的场强在增加,此时进入电场内的载流子被加速:电子逆着电场方向移动,空穴沿着电场方向移动,P型半导体获得空穴,N型半导体获得电子,从而使内建电场强度减弱形成“负反馈”。最终PN 结的内建场强处于一个动态平衡之中,如图2-1。
在PN结的内建电场区域几乎没有自由移动的载流子,而正负粒子被晶格所束缚不能自由移动。这个空间区域称为空间电荷区,也叫耗尽层,也叫势垒区。在初学模拟电路的时候,我们经常会被这三个名词所困惑,这里我们不妨再看一下:空间电荷区是按照电荷特性划分的,该部分是不能自由移动的电荷;从电场的角度来看,内建电场阻碍了载流子的扩散,就像一堵墙一样,如果载流子要通过这个区域必须获得克服该势垒的能量;从载流子的角度来看,这里的电子和空穴进行了复合,仿佛附近的载流子被消耗了一般,因此也称为耗尽层。所以,空间电荷区 = 势垒区 = 耗尽层
图2-1 PN结的结构与内建电场

3、PN结的开关特性

PN结形成的耗尽层,可以说是整个半导体工业的基础结构:因为其单相导电性。如图3-1,如果我们在P型半导体加上正电压,N型半导体加上负电压,P型半导体电子被抽走,剩下空穴;N型半导体获得电子补充。外部电压提供的电子和空穴在耗尽层进行复合,空间电荷区减小,形成源源不断的电流流动。相反,如图3-2,如果在P型半导体上加上负电压,N型半导体上加上正电压,P型半导体获得多余的电子;N型半导体电子被抽走,留下带正电的空穴,空间电荷区增加,内建场强增加,阻碍电子的漂移运动,PN结保持截止状态。
图3-1 PN结的正向导通
图3-2 PN结反向截止

4、温度对PN结的影响

在使用半导体器件中,经常碰到一个概念,就是这个器件的某个参数(比如等效阻抗,击穿电压)是正温度系数还是负温度系数。温度对半导体的特性有着至关重要的影响,那么在微观层面温度是如何影响PN结的呢? 温度的升高一方面可以提高半导体的本质载流子激发,一定程度提高了载流子浓度,更多的载流子参与导电电阻率降低;另外一方面,温度的上升导致晶格的振动增强,载流子的平均自由程变短,载流子的迁移率降低,电阻率升高。
由于工艺和应用场景不同,不同型号的二极管正向导通压降呈现正温度系数或者负温度系数。如图4-1,两个相同二极管并联。如果二极管特性如左图,其中一个二极管温度较高,那么该二极管分流的电流就越大,而电流越大温度越高,进一步加剧该二极管的分流,导致最终该二极管承受绝大部分的电流,可能引起二极管的热失效;如果二极管特性如右图,在大电流条件下,正温度系数的管压降能够自动对并联二极管进行均流,该特性的二极管才满足并联使用条件。
图4-1 二极管正向导通温度曲线
而对于二极管反向耐压而言,温度的降低意味着晶格振动的减弱,载流子更容易漂移通过势垒区,形成反向击穿电流。随着温度的升高,二极管的反向耐压是降低的

5、齐纳击穿和雪崩击穿

如果我们使用两个重掺杂的P型半导体和N型半导体制造二极管,那么载流子的浓度会很高,PN结的耗尽层会非常的薄。这时候加上反向电压能够轻松帮助载流子穿过势垒区,从而获得一定的反向电流,这种击穿称为“齐纳击穿”,该二极管称为齐纳二极管。如图5-1,进入反向击穿区(Reverse breakdown),电流迅速增大,电压保持不变,因此也称为“稳压二级管”。
简单来说,使用高掺杂的半导体形成较薄的耗尽层,载流子的迁移过程中晶格和杂质离子对载流子的散射作用比较有限,可以忽略。载流子可以很轻易的穿过耗尽层,形成耗尽层的击穿。但是这种击穿能量又不高,是一种可恢复的击穿。随着温度的升高,耗尽层内的载流子活性增强,击穿电压降低。漏电流增加,这在电路设计时需要注意。
图5-1 齐纳二极管特性曲线
对于普通掺杂的二极管,同样的温度的升高会使得耗尽层内的载流子活性增强,更容易被激发出来。但是由于耗尽层的距离较远需要穿过更多的晶格,晶格的振动增强,载流子的平均自由程变短,从而使二极管的耐压提高。二极管反压后需要更多的能量将载流子加速,才能穿过势垒区,形成反向电流。在加速的电子过程中,由于电场很强,加速电子后很容易轰击出其他接近电离的粒子(想象下大力出奇迹地轰击台球),于是雪崩效应发生了。雪崩效应电离出的载流子越来越多,最终电流也越来越大,形成击穿电流,烧毁二极管。
比较下齐纳击穿和雪崩击穿,如图5-2可以看出,雪崩击穿的曲线拐点较缓慢,而齐纳击穿的拐点较陡。并且先发生齐纳击穿,再发生雪崩击穿,雪崩击穿能量要比齐纳击穿的能量大得多。
图5-2 齐纳击穿与雪崩击穿

参考资料:

  1. https://www.ednchina.com/news/5615.html
  2. https://zhuanlan.zhihu.com/p/77910253

【白话模电1】PN结与二极管的更多相关文章

  1. 初级模拟电路:1-2 PN结与二极管

    回到目录 1.   掺杂半导体 上面我们分析了本征半导体的导电情况,但由于本征半导体的导电能力很低,没什么太大用处.所以,一般我们会对本征半导体材料进行掺杂,即使只添加了千分之一的杂质,也足以改变半导 ...

  2. 《学渣的电子技术自学笔记》——二极管的工作频率与PN结结面积的关系

    <学渣的电子技术自学笔记>--二极管的工作频率与PN结结面积的关系 书本原文 :按结构分,二极管有点接触型.面接触型和平面型三类.点接触型二极管(一般为锗管)的PN结结面积很小(结电容小) ...

  3. 非常有助于理解二极管PN结原理的资料

    https://www.zhihu.com/question/60053574/answer/174137061 我理解的半导体 pn 结的原理,哪里错了? https://blog.csdn.net ...

  4. PN结讲解

    可能大家在使用半导体器件的时候只是在使用它的电气属性,并没有很好的关心下它是什么原因才有了这样的电气属性,那么我们本篇就从物理结构分析下PN结吧. 首先看一张比较陈旧的图图: (就按自己的笔记简单谈谈 ...

  5. 模电&数电知识整理(不定期更新)

    模电总复习之爱课堂题目概念整理 Chapter 1 1) 设室温情况下某二极管的反偏电压绝对值为1V,则当其反偏电压值减少100mV时,反向电流的变化是基本不发生变化. 2) 二极管发生击穿后,在击穿 ...

  6. PN结

    摘自:https://blog.csdn.net/CPJ_phone/article/details/40979027                                          ...

  7. 二级管工作原理(PN结原理)学习

    0.小叙闲言 前面已经写了两篇介绍放大器应用和MOSFET作驱动的文章:常规放大电路和差分放大电路和MOSFET使用与H桥驱动问题.但是对它们的工作原理并没有进一步研究一下,今天写下这篇文章,主要是介 ...

  8. PN结的单向导电性及PN结的电流方程及PN结电容

    PN结加正向电压 当PN结外加正向电压时,外电场将多数载流子推向空间电荷区,使其变窄,削弱了内电场,破坏了原来的平衡,使扩散运动加剧,PN结导通.PN结的压降只有零点几付,所以在其回路里应串联一个电阻 ...

  9. PN结的形成

    P型半导体 在纯净的硅晶体中掺入3价元素如硼,使之取代晶格中硅原子的位置,就形成了P型半导体.在P型半导体中,空穴为多字,自由电子为少子,主要靠空穴导电.掺入的杂质越多,空穴的浓度就越大,导电性就越强 ...

  10. PN结加正向偏置电压 其空间电荷区为何变窄

    理论基础:导体是内部具有较多可以自由移动的电荷的物体. 绝缘体是内部没有或者有很少可以自由移动的电荷的物体. +代表空穴带正电 -代表电子带负电 两竖线之间表示无自由移动电子或空穴部分,相当于绝缘体 ...

随机推荐

  1. 齐博x1标签之异步加载标签数据

    为什么要异步加载标签?他有什么好处 如果一个页面的标签太多,又或者是页面中某一个标签调用数据太慢的话,就会拖慢整个页面的打开,非常影响用户体验.这个时候,用异步加载的话,就可以一块一块的显示,用户体验 ...

  2. 知识图谱顶会论文(ACL-2022) ACL-SimKGC:基于PLM的简单对比KGC

    12.(2022.5.4)ACL-SimKGC:基于PLM的简单对比KGC 12.(2022.5.4)ACL-SimKGC:基于PLM的简单对比KGC 摘要 1.引言 2.相关工作 2.1 知识图补全 ...

  3. 栈溢出漏洞利用流程——以syncbrs为例

    0x1 缓冲区溢出漏洞攻击简介 缓冲区溢出攻击是针对程序设计缺陷,向程序输入缓冲区写入使之溢出的内容(通常是超过缓冲区能保存的最大数据量的数据),从而破坏程序的堆栈,使程序转而执行其他指令,以达到攻击 ...

  4. IP分类与子网划分

    1.IP地址的格式  每一类地址都由两个固定长度的字段组成: (1)网络号 net-id:它标志主机(或路由器)所连接到的网络 (2)主机号 host-id:它标志该主机(或路由器).   最大可指派 ...

  5. Python基础部分:7、 垃圾回收机制和流程控制

    目录 一.垃圾回收机制 1.引用计数 2.标记清除 3.分类代收 二.流程控制 1.理论 2.必备知识 3.分支结构 4.循环结构 一.垃圾回收机制 垃圾回收机制,简称GC,是python解释器自带的 ...

  6. 京东云开发者|软件架构可视化及C4模型:架构设计不仅仅是UML

    软件系统架构设计的目标不在于设计本身,而在于架构设计意图的传达.图形化有助于在团队间进行高效的信息同步,但不同的图形化方式需要语义一致性和效率间实现平衡.C4模型通过不同的抽象层级来表达系统的静态结构 ...

  7. .Net6新版本的AssemblyLoadContext 加载程序集和卸载程序集

    准备俩个项目 第一个是控制台 第二个项目是类库 类库项目中只有一个示例class 将类库的代码生成dll 并且设置属性为复制到输出目录 using System.Runtime.Loader; var ...

  8. 不借助idea开发工具构建一个Javaweb项目

    不借助idea开发工具构建一个Javaweb项目 目录结构 webappsroot |----------WEB-INF |----------classes(存放字节码) |----------li ...

  9. 手把手,完整的从0搭建vite-vue3-ts项目框架:配置less+svg+pinia+vant+axios

    项目同步git:https://gitee.com/lixin_ajax/vue3-vite-ts-pinia-vant-less.git 为避免赘述,过于基础的点会直接省略或贴图,比如创建文件夹/文 ...

  10. C温故补缺(十):输入输出

    输入输出 printf()和scanf() 用来格式化输入输出,它们都是有返回值的 int printf()返回输出的内容的长度 #include<stdio.h> int main(){ ...