通过HPA实现业务应用的动态扩缩容

HPA控制器介绍

当系统资源过高的时候,我们可以使用如下命令来实现 Pod 的扩缩容功能

$ kubectl -n luffy scale deployment myblog --replicas=2

但是这个过程是手动操作的。在实际项目中,我们需要做到是的是一个自动化感知并自动扩容的操作。Kubernetes 也为提供了这样的一个资源对象:Horizontal Pod Autoscaling(Pod 水平自动伸缩),简称HPA

基本原理:HPA 通过监控分析控制器控制的所有 Pod 的负载变化情况来确定是否需要调整 Pod 的副本数量

HPA的实现有两个版本:

  • autoscaling/v1,只包含了根据CPU指标的检测,稳定版本
  • autoscaling/v2beta1,支持根据memory或者用户自定义指标进行伸缩

如何获取Pod的监控数据?

  • k8s 1.8以下:使用heapster,1.11版本完全废弃
  • k8s 1.8以上:使用metric-server

思考:为什么之前用 heapster ,现在废弃了项目,改用 metric-server ?

heapster时代,apiserver 会直接将metric请求通过apiserver proxy 的方式转发给集群内的 hepaster 服务,采用这种 proxy 方式是有问题的:

  • http://kubernetes_master_address/api/v1/namespaces/namespace_name/services/service_name[:port_name]/proxy
  • proxy只是代理请求,一般用于问题排查,不够稳定,且版本不可控

  • heapster的接口不能像apiserver一样有完整的鉴权以及client集成

  • pod 的监控数据是核心指标(HPA调度),应该和 pod 本身拥有同等地位,即 metric应该作为一种资源存在,如metrics.k8s.io 的形式,称之为 Metric Api

于是官方从 1.8 版本开始逐步废弃 heapster,并提出了上边 Metric api 的概念,而 metrics-server 就是这种概念下官方的一种实现,用于从 kubelet获取指标,替换掉之前的 heapster。

Metrics Server 可以通过标准的 Kubernetes API 把监控数据暴露出来,比如获取某一Pod的监控数据:

https://172.21.51.143:6443/apis/metrics.k8s.io/v1beta1/namespaces/<namespace-name>/pods/<pod-name>

# https://172.21.51.143:6443/api/v1/namespaces/luffy/pods?limit=500

目前的采集流程:

Metric Server

官方介绍

...
Metric server collects metrics from the Summary API, exposed by Kubelet on each node. Metrics Server registered in the main API server through Kubernetes aggregator, which was introduced in Kubernetes 1.7
...
安装

官方代码仓库地址:https://github.com/kubernetes-sigs/metrics-server

Depending on your cluster setup, you may also need to change flags passed to the Metrics Server container. Most useful flags:

  • --kubelet-preferred-address-types - The priority of node address types used when determining an address for connecting to a particular node (default [Hostname,InternalDNS,InternalIP,ExternalDNS,ExternalIP])
  • --kubelet-insecure-tls - Do not verify the CA of serving certificates presented by Kubelets. For testing purposes only.
  • --requestheader-client-ca-file - Specify a root certificate bundle for verifying client certificates on incoming requests.
$ wget https://github.com/kubernetes-sigs/metrics-server/releases/download/v0.4.4/components.yaml

修改args参数:

...
130 containers:
131 - args:
132 - --cert-dir=/tmp
133 - --secure-port=4443
134 - --kubelet-insecure-tls
135 - --kubelet-preferred-address-types=InternalIP,ExternalIP,Hostname
136 - --kubelet-use-node-status-port
137 image: willdockerhub/metrics-server:v0.4.4
138 imagePullPolicy: IfNotPresent
...

执行安装:

$ kubectl apply -f components.yaml

$ kubectl -n kube-system get pods

$ kubectl top nodes
kubelet的指标采集

无论是 heapster还是 metric-server,都只是数据的中转和聚合,两者都是调用的 kubelet 的 api 接口获取的数据,而 kubelet 代码中实际采集指标的是 cadvisor 模块,你可以在 node 节点访问 10250 端口获取监控数据:

调用示例:

$ curl -k  -H "Authorization: Bearer eyJhbGciOiJSUzI1NiIsImtpZCI6InhXcmtaSG5ZODF1TVJ6dUcycnRLT2c4U3ZncVdoVjlLaVRxNG1wZ0pqVmcifQ.eyJpc3MiOiJrdWJlcm5ldGVzL3NlcnZpY2VhY2NvdW50Iiwia3ViZXJuZXRlcy5pby9zZXJ2aWNlYWNjb3VudC9uYW1lc3BhY2UiOiJrdWJlcm5ldGVzLWRhc2hib2FyZCIsImt1YmVybmV0ZXMuaW8vc2VydmljZWFjY291bnQvc2VjcmV0Lm5hbWUiOiJhZG1pbi10b2tlbi1xNXBueiIsImt1YmVybmV0ZXMuaW8vc2VydmljZWFjY291bnQvc2VydmljZS1hY2NvdW50Lm5hbWUiOiJhZG1pbiIsImt1YmVybmV0ZXMuaW8vc2VydmljZWFjY291bnQvc2VydmljZS1hY2NvdW50LnVpZCI6ImViZDg2ODZjLWZkYzAtNDRlZC04NmZlLTY5ZmE0ZTE1YjBmMCIsInN1YiI6InN5c3RlbTpzZXJ2aWNlYWNjb3VudDprdWJlcm5ldGVzLWRhc2hib2FyZDphZG1pbiJ9.iEIVMWg2mHPD88GQ2i4uc_60K4o17e39tN0VI_Q_s3TrRS8hmpi0pkEaN88igEKZm95Qf1qcN9J5W5eqOmcK2SN83Dd9dyGAGxuNAdEwi0i73weFHHsjDqokl9_4RGbHT5lRY46BbIGADIphcTeVbCggI6T_V9zBbtl8dcmsd-lD_6c6uC2INtPyIfz1FplynkjEVLapp_45aXZ9IMy76ljNSA8Uc061Uys6PD3IXsUD5JJfdm7lAt0F7rn9SdX1q10F2lIHYCMcCcfEpLr4Vkymxb4IU4RCR8BsMOPIO_yfRVeYZkG4gU2C47KwxpLsJRrTUcUXJktSEPdeYYXf9w" https://localhost:10250/metrics

kubelet虽然提供了 metric 接口,但实际监控逻辑由内置的cAdvisor模块负责,早期的时候,cadvisor是单独的组件,从k8s 1.12开始,cadvisor 监听的端口在k8s中被删除,所有监控数据统一由Kubelet的API提供。

cadvisor获取指标时实际调用的是 runc/libcontainer库,而libcontainer是对 cgroup文件 的封装,即 cadvsior也只是个转发者,它的数据来自于cgroup文件。

cgroup文件中的值是监控数据的最终来源

Metrics数据流:

思考:

Metrics Server是独立的一个服务,只能服务内部实现自己的api,是如何做到通过标准的kubernetes 的API格式暴露出去的?

kube-aggregator

kube-aggregator聚合器及Metric-Server的实现

kube-aggregator是对 apiserver 的api的一种拓展机制,它允许开发人员编写一个自己的服务,并把这个服务注册到k8s的api里面,即扩展 API 。

定义一个APIService对象:

apiVersion: apiregistration.k8s.io/v1
kind: APIService
metadata:
name: v1beta1.luffy.k8s.io
spec:
group: luffy.k8s.io
groupPriorityMinimum: 100
insecureSkipTLSVerify: true
service:
name: service-A # 必须https访问
namespace: luffy
port: 443
version: v1beta1
versionPriority: 100

k8s会自动帮我们代理如下url的请求:

proxyPath := "/apis/" + apiService.Spec.Group + "/" + apiService.Spec.Version

即:https://172.21.51.143:6443/apis/luffy.k8s.io/v1beta1/xxxx转到我们的service-A服务中,service-A中只需要实现 https://service-A/apis/luffy.k8s.io/v1beta1/xxxx 即可。

看下metric-server的实现:

$ kubectl get apiservice
NAME SERVICE AVAILABLE
v1beta1.metrics.k8s.io kube-system/metrics-server True $ kubectl get apiservice v1beta1.metrics.k8s.io -oyaml
...
spec:
group: metrics.k8s.io
groupPriorityMinimum: 100
insecureSkipTLSVerify: true
service:
name: metrics-server
namespace: kube-system
port: 443
version: v1beta1
versionPriority: 100
... $ kubectl -n kube-system get svc metrics-server
NAME TYPE CLUSTER-IP EXTERNAL-IP PORT(S) AGE
metrics-server ClusterIP 10.110.111.146 <none> 443/TCP 11h $ curl -k -H "Authorization: Bearer xxxx" https://10.110.111.146
{
"paths": [
"/apis",
"/apis/metrics.k8s.io",
"/apis/metrics.k8s.io/v1beta1",
"/healthz",
"/healthz/healthz",
"/healthz/log",
"/healthz/ping",
"/healthz/poststarthook/generic-apiserver-start-informers",
"/metrics",
"/openapi/v2",
"/version"
] # https://172.21.51.143:6443/apis/metrics.k8s.io/v1beta1/namespaces/<namespace-name>/pods/<pod-name>
# kubectl get --raw /apis/metrics.k8s.io/v1beta1/namespaces/luffy/pods/myblog-796dcdd8d5-rkzsm|jq
$ curl -k -H "Authorization: Bearer xxxx" https://10.110.111.146/apis/metrics.k8s.io/v1beta1/namespaces/luffy/pods/myblog-5d9ff54d4b-4rftt $ curl -k -H "Authorization: Bearer xxxx" https://172.21.51.143:6443/apis/metrics.k8s.io/v1beta1/namespaces/luffy/pods/myblog-5d9ff54d4b-4rftt
HPA实践
基于CPU和内存的动态伸缩

创建hpa对象:

# 方式一
$ cat hpa-myblog.yaml
apiVersion: autoscaling/v2beta2
kind: HorizontalPodAutoscaler
metadata:
name: hpa-myblog
namespace: luffy
spec:
maxReplicas: 3
minReplicas: 1
scaleTargetRef:
apiVersion: apps/v1
kind: Deployment
name: myblog
metrics:
- type: Resource
resource:
name: memory
target:
type: Utilization
averageUtilization: 80
- type: Resource
resource:
name: cpu
target:
type: Utilization
averageUtilization: 20 # 方式二
$ kubectl -n luffy autoscale deployment myblog --cpu-percent=10 --min=1 --max=3

Deployment对象必须配置requests的参数,不然无法获取监控数据,也无法通过HPA进行动态伸缩

验证:

$ yum -y install httpd-tools
$ kubectl -n luffy get svc myblog
myblog ClusterIP 10.104.245.225 <none> 80/TCP 6d18h # 为了更快看到效果,先调整副本数为1
$ kubectl -n luffy scale deploy myblog --replicas=1 # 模拟1000个用户并发访问页面10万次
$ ab -n 100000 -c 1000 http://10.104.245.225/blog/index/ $ kubectl get hpa
$ kubectl -n luffy get pods

压力降下来后,会有默认5分钟的scaledown的时间,可以通过controller-manager的如下参数设置:

--horizontal-pod-autoscaler-downscale-stabilization

The value for this option is a duration that specifies how long the autoscaler has to wait before another downscale operation can be performed after the current one has completed. The default value is 5 minutes (5m0s).

是一个逐步的过程,当前的缩放完成后,下次缩放的时间间隔,比如从3个副本降低到1个副本,中间大概会等待2*5min = 10分钟

基于自定义指标的动态伸缩

除了基于 CPU 和内存来进行自动扩缩容之外,我们还可以根据自定义的监控指标来进行。这个我们就需要使用 Prometheus Adapter,Prometheus 用于监控应用的负载和集群本身的各种指标,Prometheus Adapter 可以帮我们使用 Prometheus 收集的指标并使用它们来制定扩展策略,这些指标都是通过 APIServer 暴露的,而且 HPA 资源对象也可以很轻易的直接使用。

架构图:

三十三、HPA实现自动扩缩容的更多相关文章

  1. 通过Dapr实现一个简单的基于.net的微服务电商系统(十一)——一步一步教你如何撸Dapr之自动扩/缩容

    上一篇我们讲到了dapr提供的bindings,通过绑定可以让我们的程序轻装上阵,在极端情况下几乎不需要集成任何sdk,仅需要通过httpclient+text.json即可完成对外部组件的调用,这样 ...

  2. Knative 基本功能深入剖析:Knative Serving 自动扩缩容 Autoscaler

    Knative Serving 默认情况下,提供了开箱即用的快速.基于请求的自动扩缩容功能 - Knative Pod Autoscaler(KPA).下面带你体验如何在 Knative 中玩转 Au ...

  3. minikube metrics-server HPA 自动扩缩容错误

    minikube metrics-server pod 错误 启动 minikube addons enable metrics-server 之后查看 metrics-server pod 会有如下 ...

  4. Marathon自动扩缩容(marathon-lb-autoscale)

    我们在服务里面创建如下的应用(以下是创建完复制过来的json): { "id": "/nginxtest", "cmd": null, &q ...

  5. 13.深入k8s:Pod 水平自动扩缩HPA及其源码分析

    转载请声明出处哦~,本篇文章发布于luozhiyun的博客:https://www.luozhiyun.com 源码版本是1.19 Pod 水平自动扩缩 Pod 水平自动扩缩工作原理 Pod 水平自动 ...

  6. 【六】K8s-Pod 水平自动扩缩实践(简称HPA)

    一.概述 Pod 水平自动扩缩(Horizontal Pod Autoscaler)简称 HPA,HPA 可以根据 CPU 利用率进行自动伸缩 Pod 副本数量,除了 CPU 利用率,也可以基于其他应 ...

  7. Kubernetes 监控:Prometheus Adpater =》自定义指标扩缩容

    使用 Kubernetes 进行容器编排的主要优点之一是,它可以非常轻松地对我们的应用程序进行水平扩展.Pod 水平自动缩放(HPA)可以根据 CPU 和内存使用量来扩展应用,前面讲解的 HPA 章节 ...

  8. Airbnb的动态kubernetes集群扩缩容

    Airbnb的动态kubernetes集群扩缩容 本文介绍了Airbnb的集群扩缩容的演化历史,以及当前是如何通过Cluster Autoscaler 实现自定义扩展器的.最重要的经验就是Airbnb ...

  9. 如何根据不同业务场景调节 HPA 扩缩容灵敏度

    背景 在 K8s 1.18 之前,HPA 扩容是无法调整灵敏度的: 对于缩容,由 kube-controller-manager 的 --horizontal-pod-autoscaler-downs ...

随机推荐

  1. .NET异步编程模式(一)

    .NET 提供了三种异步编程模型 TAP - task-based asynchronous pattern APM - asynchronous programming model EAP - ev ...

  2. Java源码分析 | Object

    本文基于 OracleJDK 11, HotSpot 虚拟机. Object 定义 Object 类是类层次结构的根.每个类都有 Object 类作为超类.所有对象,包括数组等,都实现了这个类的方法. ...

  3. 快速掌握 Base 64 | 学 Java 密码系列

    Java 密码系列 - Java 和 JS Base 64 Base 64 不属于密码技术,仅是编码方式.但由于在 Java.JavaScript.区块链等出现的频率较高,故在本系列文章中首先分享 B ...

  4. 检查一个数值是否为有限的Number.isFinite()

    如果参数类型不是数值,Number.isFinite()一律返回false. Number.isFinite(15); // true Number.isFinite(0.8); // true Nu ...

  5. NOI2021 同步赛游记

    写在前面的话 为什么叫游记呢?因为我第一天是在划水中度过的,错过了对原题的发现. O n e I n D a r k \tt OneInDark OneInDark 无比风光地去了浙江,却倒霉地遇上了 ...

  6. C#基础_手动书写XML

    XML文档内容: 1.文档声明2.元素=标签 文档总至少要有一个根元素3.属性4.注释   <!--注释内容-->5.CDATA区.特殊字符 <![CDATA[不想解析的内容]]&g ...

  7. awk5个使用场景

    awk简介 首先要知道awk的使用场景,需了解awk有哪些优势与短板. 关于个人近期学习awk总结其优势: awk对文本的处理运算效率同比其他工具效率高很多(比shell的for循环高10倍以上,运算 ...

  8. CF-1684C - Column Swapping

    Problem - 1684C - Codeforces 题意: 现在有一个n*m的棋盘,每个棋子有一个值,你可以交换两列棋盘的棋子位置,使得每一行的棋子从左到右为非递减. 题解: 只需要判断一行不满 ...

  9. Android平台RTMP/RTSP播放器开发系列--解码和绘制

    本文主要抛砖引玉,粗略介绍下Android平台RTMP/RTSP播放器中解码和绘制相关的部分(Github). 解码 提到解码,大家都知道软硬解,甚至一些公司觉得硬解码已经足够通用,慢慢抛弃软解了,如 ...

  10. 使用J2EE 登录实例开发

    我们先了解下Servlet的生命周期 Servlet部署在容器里,其生命周期由容器管理. 概括为以下几个阶段: 1)容器加载Servlet类. 当第一次有Web客户请求Servlet服务或当Web服务 ...