Bob 的生存概率问题
Bob 的生存概率问题
作者:Grey
原文地址:
题目描述
给定五个参数 n , m , i , j , k,表示在一个 n*m
的区域,Bob 处在 (i,j) 点,每次 Bob 等概率的向上、 下、左、右四个方向移动一步,Bob 必须走 k 步。如果走完之后,Bob 还停留在这个区域上, 就算 Bob 存活,否则就算 Bob 死亡。请求解 Bob 的生存概率,返回字符串表示分数的方式。
题目链接:牛客-Bob的生存概率
暴力解法
由于 Bob 可以向四个方向任意一个方向走 k 步,所以,Bob 可以选择走的路线总数是:4^k
,即:4 的 k 次方。
接下来就是要求在 4 ^ k
总数中,哪些是存活下来的路线,定义如下递归函数
long process(int i, int j, int k, int n, int m)
递归含义表示:目前在 (i,j) 位置,还有 k 步要走,走完了如果还在棋盘中就获得1个生存点,返回总的生存点数。
接下来是 base case,如果越界了,直接返回 0,
if (i < 0 || i == n || j < 0 || j == m) {
return 0;
}
表示没有生存机会,
如果没有越界,但是此时正好 k == 0
,说明已经有一种存活路线了,返回 1,表示一种有效路线。
if (i < 0 || i == n || j < 0 || j == m) {
return 0;
}
// 没有越界,说明还在棋盘中,没有步数了,直接返回一种有效路线。
if (k == 0) {
return 1;
}
接下来是普遍情况, Bob 在棋盘中,可以往四面八方走,即
long up = process(i - 1, j, k - 1, n, m);
long down = process(i + 1, j, k - 1, n, m);
long left = process(i, j - 1, k - 1, n, m);
long right = process(i, j + 1, k - 1, n, m);
上述表示四面八方走返回的有效路线,四个方向的有效路线之和,就是答案,即
return up + down + left + right;
递归函数的完整代码如下
public static long process(int i, int j, int k, int n, int m) {
if (i < 0 || i == n || j < 0 || j == m) {
return 0;
}
// 还在棋盘中!
if (k == 0) {
return 1;
}
// 还在棋盘中!还有步数要走
long up = process(i - 1, j, k - 1, n, m);
long down = process(i + 1, j, k - 1, n, m);
long left = process(i, j - 1, k - 1, n, m);
long right = process(i, j + 1, k - 1, n, m);
return up + down + left + right;
}
由于最后的结果要返回最简的分数形式,所以假设有效路线是 X 种,所有可能的走法是 Y 种,那么返回的字符串是如下形式
return (X/gcd(X,Y)) + "/" + (Y/gcd(X,Y))
其中 gcd(X,Y)
就是利用辗转相除法得到 X,Y 的最大公约数
public static long gcd(long m, long n) {
return n == 0 ? m : gcd(n, m % n);
}
暴力解法的完整代码如下
import java.util.Scanner;
public class Main {
public static String livePossibility1(int i, int j, int k, int n, int m) {
return buildExp(process(i, j, k, n, m), (long) Math.pow(4, k));
}
// 目前在i,j位置,还有k步要走,走完了如果还在棋盘中就获得1个生存点,返回总的生存点数
public static long process(int i, int j, int k, int n, int m) {
if (i < 0 || i == n || j < 0 || j == m) {
return 0;
}
// 还在棋盘中!
if (k == 0) {
return 1;
}
// 还在棋盘中!还有步数要走
long up = process(i - 1, j, k - 1, n, m);
long down = process(i + 1, j, k - 1, n, m);
long left = process(i, j - 1, k - 1, n, m);
long right = process(i, j + 1, k - 1, n, m);
return up + down + left + right;
}
public static String buildExp(long m, long n) {
return m / gcd(m, n) + "/" + n / gcd(m, n);
}
public static long gcd(long m, long n) {
return n == 0 ? m : gcd(n, m % n);
}
public static void main(String[] args) {
Scanner sc = new Scanner(System.in);
int n = sc.nextInt();
int m = sc.nextInt();
int i = sc.nextInt();
int j = sc.nextInt();
int k = sc.nextInt();
System.out.println(livePossibility1(i, j, k, n, m));
sc.close();
}
}
超时
动态规划解 (可 AC)
根据上述暴力递归过程可知,递归函数有三个可变参数:i,j,k;所以,定义一个三维数组 dp,就可以把所有递归过程的中间值存下,根据 i,j,k 的可变范围,定义如下三维数组:
long[][][] dp = new long[n][m][k + 1];
根据暴力递归过程的 base case,可以初始化 dp 的某些位置的值
long[][][] dp = new long[n][m][k + 1];
for (int row = 0; row < n; row++) {
for (int col = 0; col < m; col++) {
dp[row][col][0] = 1;
}
}
接下来是普遍情况,通过暴力递归过程可知,dp[i][j][k]
依赖以下四个位置的值
dp[i-1][j][k-1]
dp[i+1][j][k-1]
dp[i][j-1][k-1]
dp[i][j+1][k-1]
即:三维数组的每一层只依赖上一层的数据结果,而第一层的值已经初始化好了,所以可以根据第一层求第二层,依次求到最后一层,这个动态规划的思路类似:象棋中的马跳步问题,不赘述。
动态规划的解完整代码如下
import java.util.Scanner;
public class Main {
public static String livePossibility2(int i, int j, int k, int n, int m) {
long[][][] dp = new long[n][m][k + 1];
for (int row = 0; row < n; row++) {
for (int col = 0; col < m; col++) {
dp[row][col][0] = 1;
}
}
for (int rest = 1; rest <= k; rest++) {
for (int r = 0; r < n; r++) {
for (int c = 0; c < m; c++) {
dp[r][c][rest] = pick(dp, n, m, r - 1, c, rest - 1);
dp[r][c][rest] += pick(dp, n, m, r + 1, c, rest - 1);
dp[r][c][rest] += pick(dp, n, m, r, c - 1, rest - 1);
dp[r][c][rest] += pick(dp, n, m, r, c + 1, rest - 1);
}
}
}
return buildExp(dp[i][j][k], (long) Math.pow(4, k));
}
public static String buildExp(long m, long n) {
return m / gcd(m, n) + "/" + n / gcd(m, n);
}
public static long gcd(long m, long n) {
return n == 0 ? m : gcd(n, m % n);
}
public static long pick(long[][][] dp, int n, int m, int r, int c, int rest) {
if (r < 0 || r == n || c < 0 || c == m) {
return 0;
}
return dp[r][c][rest];
}
public static void main(String[] args) {
Scanner sc = new Scanner(System.in);
int n = sc.nextInt();
int m = sc.nextInt();
int i = sc.nextInt();
int j = sc.nextInt();
int k = sc.nextInt();
System.out.println(livePossibility2(i, j, k, n, m));
sc.close();
}
}
更多
Bob 的生存概率问题的更多相关文章
- 生存模型(Survival Model)介绍
https://www.cnblogs.com/BinbinChen/p/3416972.html 生存分析,维基上的解释是: 生存分析(Survival analysis)是指根据试验或调查得到的数 ...
- R语言学习 - 非参数法生存分析--转载
生存分析指根据试验或调查得到的数据对生物或人的生存时间进行分析和推断,研究生存时间和结局与众多影响因素间关系及其程度大小的方法,也称生存率分析或存活率分析.常用于肿瘤等疾病的标志物筛选.疗效及预后的考 ...
- 生存分析(survival analysis)
一.生存分析(survival analysis)的定义 生存分析:对一个或多个非负随机变量进行统计推断,研究生存现象和响应时间数据及其统计规律的一门学科. 生存分析:既考虑结果又考虑生存时间的一种统 ...
- ACM里的期望和概率问题 从入门到精通
起因:在2020年一场HDU多校赛上.有这么一题没做出来. 题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=6829 题目大意:有三个人,他们分别有X,Y ...
- R数据分析:生存分析与有竞争事件的生存分析的做法和解释
今天被粉丝发的文章给难住了,又偷偷去学习了一下竞争风险模型,想起之前写的关于竞争风险模型的做法,真的都是皮毛哟,大家见笑了.想着就顺便把所有的生存分析的知识和R语言的做法和论文报告方法都给大家梳理一遍 ...
- 转:遗传算法解决TSP问题
1.编码 这篇文章中遗传算法对TSP问题的解空间编码是十进制编码.如果有十个城市,编码可以如下: 0 1 2 3 4 5 6 7 8 9 这条编码代表着一条路径,先经过0,再经过1,依次下去. 2.选 ...
- frequentism-and-bayesianism-chs-ii
frequentism-and-bayesianism-chs-ii 频率主义 vs 贝叶斯主义 II:当结果不同时 这个notebook出自Pythonic Perambulations的博文 ...
- tyvj1519博彩游戏
博彩游戏 From admin 背景 Background Bob最近迷上了一个博彩游戏…… 描述 Description 这个游戏的规则是这样的:每花一块钱可以得到一个随机数R,花上N块钱就可以得到 ...
- tyvj P1519 博彩游戏(AC自动机+DP滚动数组)
P1519 博彩游戏 背景 Bob最近迷上了一个博彩游戏…… 描述 这个游戏的规则是这样的:每花一块钱可以得到一个随机数R,花上N块钱就可以得到一个随机序列:有M个序列,如果某个序列是产生的随机序列的 ...
随机推荐
- jsp获取单选按钮组件的值
jsp获取单选按钮组件的值 1.首先,写一个带有单选按钮组件的前台页 1 <%@ page language="java" contentType="text/ht ...
- 抛砖系列之git仓库拆分工具git-filter-repo
最近负责把团队内的git仓库做了一次分拆,解锁一个好用的工具git-filter-repo,给大伙抛砖一波,希望以后遇到类似场景时可以信手拈来. 背景 笔者团队目前是把业务相关的java项目都放到了一 ...
- day01-GUI坦克大战01
JavaGUI-坦克大战 1.Java绘图坐标体系 坐标体系介绍:下图说明了一个Java坐标体系.坐标原点位于左上角,以像素为单位.在Java坐标体系中,第一个是x坐标,表示当前位置为水平方向,距离坐 ...
- 《Java编程思想》读书笔记(三)
前言:三年之前就买了<Java编程思想>这本书,但是到现在为止都还没有好好看过这本书,这次希望能够坚持通读完整本书并整理好自己的读书笔记,上一篇文章是记录的第十一章到第十六章的内容,这一次 ...
- STC15 串口通信
串口1选择定时器2产生波特率 串口1相关寄存器 1.选择串口1所放的管脚 2.串口1配置步骤 3.选择串口工作模式 4.确定定时器2工作速度 代码配置 void Uart1_Tim2_Config(i ...
- KingbaseES DBLink 扩展介绍
DBLink 扩展插件功能与 Kingbase_FDW 类似,用于远程访问KingbaseES 数据库.相比于Kingbase_FDW,DBLink 功能更强大,可以执行DML,还可以通过 begin ...
- K8S_删除Pod总结
K8S 不能直接删除Pod,直接删除Pod,会被Deployment重启 删除前,必须先删除对应的Deployment 例子: // 查出Pod [root@k8s-master ~]# kubect ...
- TextView 中文本内容换行
TextView 中文本内容换行 首先如图所示,我的第一栏围城的书名和书的介绍是在同一行 但是我想让书名和书的介绍分开个站一行 这时我只要在我的数组文本中的文本用 "\n" 就可以 ...
- 一文总结高并发大数据量下MySQL开发规范【军规】
在互联网公司中,MySQL是使用最多的数据库,那么在并发量大.数据量大的互联网业务中,如果高效的使用MySQL才能保证服务的稳定呢?根据本人多年运维管理经验的总结,梳理了一些核心的开发规范,希望能给大 ...
- Pod 使用进阶
静态 Pod 在 Kubernetes 集群中除了我们经常使用到的普通的 Pod 外,还有一种特殊的 Pod,叫做Static Pod,也就是我们说的静态 Pod,静态 Pod 有什么特殊的地方呢? ...