2023-03-26:给定一个二维数组matrix,
每个格子都是正数,每个格子都和上、下、左、右相邻。
你可以从任何一个格子出发,走向相邻的格子,
把沿途的数字乘起来,希望得到的最终数字中,结尾的0最多,
走的过程中,向左走或者向右走的拐点,最多只能有一次。
返回结尾最多的0,能是多少。
1 <= 行、列 <= 400。

答案2023-03-26:

解题思路

本题需要求出从任意位置出发,最多能有多少个结尾0。为了方便计算,可以先将矩阵中每个数分解成2和5的因子,然后通过前缀和预处理出每个位置上、左方向的2和5的因子数量之和,以便快速计算6个方向上的因子数量之和。接着遍历每个位置,分别计算6个方向上的因子数量之和,并取其中的最小值,最后返回所有最小值中的最大值即可。

具体来说,对于一个位置(i,j),可以计算它的左、右、上、下4个方向的2和5的因子数量之和,以及两个斜方向的2和5的因子数量之和共6个值。然后取这6个值中的最小值,就是从该位置出发,在该方向上能够得到的最多结尾0的数量。遍历所有位置,取最大值即可。

需要注意的是,由于只能有一次向左或向右的拐点,因此在计算左和右方向上的因子数量之和时,需要分别计算到该行左边界和右边界的因子数量之和,然后再通过减法计算出中间部分的因子数量之和。

时间复杂度

本算法需要对矩阵中每个数进行分解质因数,时间复杂度为O(n ^ 2log(max(matrix)));两层循环分别对n和m进行遍历,时间复杂度为O(nm);因此总时间复杂度为O(n^2log(max(matrix))+nm)。

空间复杂度

本算法需要维护4个二维数组,每个数组的大小均为n×m,因此空间复杂度为O(nm)。

rust代码

fn most_trailing_zeros(matrix: &Vec<Vec<i32>>) -> i32 {
let n = matrix.len(); // 矩阵行数
let m = matrix[0].len(); // 矩阵列数 // f2[i][j] : matrix[i][j]自己有几个2的因子
let mut f2 = vec![vec![0; m]; n];
// f5[i][j] : matrix[i][j]自己有几个5的因子
let mut f5 = vec![vec![0; m]; n]; // 预处理每个位置的2和5的因子数量
for i in 0..n {
for j in 0..m {
f2[i][j] = factors(matrix[i][j], 2);
f5[i][j] = factors(matrix[i][j], 5);
}
} // 计算每个位置上、左方向的2和5的因子数量之和
let mut left_f2 = vec![vec![0; m]; n];
let mut left_f5 = vec![vec![0; m]; n];
let mut up_f2 = vec![vec![0; m]; n];
let mut up_f5 = vec![vec![0; m]; n]; for i in 0..n {
for j in 0..m {
left_f2[i][j] = f2[i][j] + if j > 0 { left_f2[i][j - 1] } else { 0 };
left_f5[i][j] = f5[i][j] + if j > 0 { left_f5[i][j - 1] } else { 0 };
up_f2[i][j] = f2[i][j] + if i > 0 { up_f2[i - 1][j] } else { 0 };
up_f5[i][j] = f5[i][j] + if i > 0 { up_f5[i - 1][j] } else { 0 };
}
} let mut ans = 0;
for i in 0..n {
for j in 0..m {
// 来到(i,j),计算6个方向上的因子数量之和
let l2 = if j == 0 { 0 } else { left_f2[i][j - 1] }; // 左边的2因子数量之和
let l5 = if j == 0 { 0 } else { left_f5[i][j - 1] }; // 左边的5因子数量之和
let r2 = left_f2[i][m - 1] - left_f2[i][j]; // 右边的2因子数量之和
let r5 = left_f5[i][m - 1] - left_f5[i][j]; // 右边的5因子数量之和
let u2 = if i == 0 { 0 } else { up_f2[i - 1][j] }; // 上面的2因子数量之和
let u5 = if i == 0 { 0 } else { up_f5[i - 1][j] }; // 上面的5因子数量之和
let d2 = up_f2[n - 1][j] - up_f2[i][j]; // 下面的2因子数量之和
let d5 = up_f5[n - 1][j] - up_f5[i][j]; // 下面的5因子数量之和 // 计算6个方向上因子数量之和最小的值
let p1 = std::cmp::min(l2 + u2 + f2[i][j], l5 + u5 + f5[i][j]);
let p2 = std::cmp::min(l2 + r2 + f2[i][j], l5 + r5 + f5[i][j]);
let p3 = std::cmp::min(l2 + d2 + f2[i][j], l5 + d5 + f5[i][j]);
let p4 = std::cmp::min(u2 + r2 + f2[i][j], u5 + r5 + f5[i][j]);
let p5 = std::cmp::min(u2 + d2 + f2[i][j], u5 + d5 + f5[i][j]);
let p6 = std::cmp::min(r2 + d2 + f2[i][j], r5 + d5 + f5[i][j]); // 取6个方向上的最小值中的最大值作为答案
ans = std::cmp::max(
ans,
std::cmp::max(
std::cmp::max(p1, p2),
std::cmp::max(std::cmp::max(p3, p4), std::cmp::max(p5, p6)),
),
);
}
} ans
} // 计算num有几个f的因子
fn factors(num: i32, f: i32) -> i32 {
let mut ans = 0;
let mut num = num; while num % f == 0 {
ans += 1;
num /= f;
} ans
} fn main() {
let matrix1 = vec![
vec![5, 8, 3, 1],
vec![4, 15, 12, 1],
vec![6, 7, 10, 1],
vec![9, 1, 2, 1],
];
println!("{}", most_trailing_zeros(&matrix1)); // 输出:2 let matrix2 = vec![
vec![7500, 10, 11, 12],
vec![6250, 13, 14, 15],
vec![134, 17, 16, 1],
vec![5500, 2093, 5120, 238],
];
println!("{}", most_trailing_zeros(&matrix2)); // 输出:13
}

运行结果

2023-03-26:给定一个二维数组matrix, 每个格子都是正数,每个格子都和上、下、左、右相邻。 你可以从任何一个格子出发,走向相邻的格子, 把沿途的数字乘起来,希望得到的最终数字中,结尾的0的更多相关文章

  1. ytu 1050:写一个函数,使给定的一个二维数组(3×3)转置,即行列互换(水题)

    1050: 写一个函数,使给定的一个二维数组(3×3)转置,即行列互换 Time Limit: 1 Sec  Memory Limit: 128 MBSubmit: 154  Solved: 112[ ...

  2. [CareerCup] 13.10 Allocate a 2D Array 分配一个二维数组

    13.10 Write a function in C called my2DAlloc which allocates a two-dimensional array. Minimize the n ...

  3. new一个二维数组

    .定义一个二维数组 char **array1 array1 = new char *[x]; for(i=0;i<x;++i) array1[i] = new char[y]; ...用的时候 ...

  4. c语言题目:找出一个二维数组的“鞍点”,即该位置上的元素在该行上最大,在该列上最小。也可能没有鞍点

    //题目:找出一个二维数组的“鞍点”,即该位置上的元素在该行上最大,在该列上最小.也可能没有鞍点. // #include "stdio.h" #include <stdli ...

  5. php中向前台js中传送一个二维数组

    在php中向前台js中传送一个二维数组,并在前台js接收获取其中值的全过程方法: (1),方法说明:现在后台将数组发送到前台 echo json_encode($result); 然后再在js页面中的 ...

  6. JAVA生成一个二维数组,使中间元素不与相邻的9个元素相等,并限制每一个元素的个数

    JAVA生成一个二维数组,使中间元素不与相邻的9个元素相等,并限制每一个元素的个数 示例如下 至少需要九个元素:"A","B","C",&q ...

  7. 如何用一个for循环打印出一个二维数组

    思路分析: 二维数组在内存中默认是按照行存储的,比如一个二维数组{{1,2,3,},{4,5,6}},它在内存中存储的顺序就是1.2.3.4.5.6,也就是说,对于这6个数组元素,按照从0到5给它们编 ...

  8. C语言程序,找出一个二维数组的鞍点。

    什么是鞍点????? 鞍点就是在一个二维数组中,某一个数在该行中最大,然而其在该列中又是最小的数,这样的数称为鞍点. 昨天突然在书上看到这样的一道题,就自己尝试着写了一个找出一个二维数组中的鞍点. 好 ...

  9. <转载>c++中new一个二维数组

    原文连接 在c++中定义一个二维数组时有多种方式,下面是几种定义方式的说明:其中dataType 表示数据类型,如int  byte  long... 1.dataType (*num)[n] = n ...

  10. C#编写程序,找一找一个二维数组中的鞍点

    编写程序,找一找一个二维数组中的鞍点(即该位置上的元素值在行中最大,在该列上最小.有可能数组没有鞍点).要求: 1.二维数组的大小.数组元素的值在运行时输入: 2.程序有友好的提示信息. 代码: us ...

随机推荐

  1. 实验2:Open vSwitch虚拟交换机实践(补实验一作业链接)

    实验1:SDN拓扑实践 实验2:Open vSwitch虚拟交换机实践 一.实验目的 能够对Open vSwitch进行基本操作: 能够通过命令行终端使用OVS命令操作Open vSwitch交换机, ...

  2. 3DMAX2018安装

    1.下载3DMAX2018安装包并解压 2.打开解压后的文件点击Setup 选择语言和安装位置点击下一步 安装完成后点击enter a serial number 输入序列号066-66666666, ...

  3. axios请求本地文件404

    解决办法:将json文件放在public文件夹下 请求页面的url路径这样写,不能加上../public/这样的路径,直接就是/aa.json

  4. OSPF之路由撤销1

  5. Unity录音保存wav

    using System; using System.Collections; using System.Collections.Generic; using System.IO; using Sys ...

  6. GO语言学习笔记-方法篇 Study for Go ! Chapter five - Method

    持续更新 Go 语言学习进度中 ...... GO语言学习笔记-类型篇 Study for Go! Chapter one - Type - slowlydance2me - 博客园 (cnblogs ...

  7. 笔精墨妙,妙手丹青,微软开源可视化版本的ChatGPT:Visual ChatGPT,人工智能AI聊天发图片,Python3.10实现

    说时迟那时快,微软第一时间发布开源库Visual ChatGPT,把 ChatGPT 的人工智能AI能力和Stable Diffusion以及ControlNet进行了整合.常常被互联网人挂在嘴边的& ...

  8. 为什么 C# 可能是最好的第一编程语言

    纵观神州大地,漫游中华互联网,我看到很多人关注为什么你应该开始学习JavaScript做前端,而对blazor这样的面向未来的框架有种莫名的瞧不起,或者为什么你应该学习Python作为你的第一门编程语 ...

  9. FastCorrect:语音识别快速纠错模型丨RTC Dev Meetup

    前言 「语音处理」是实时互动领域中非常重要的一个场景,在声网发起的「RTC Dev Meetup丨语音处理在实时互动领域的技术实践和应用」活动中,来自百度.寰宇科技和依图的技术专家,围绕该话题进行了相 ...

  10. 第一章 1.1.1节 Kubeadm安装K8S高可用集群

    1.1 安装前必读 请不要使用带中文的服务器和克隆的虚拟机. 生产环境建议使用二进制的方式安装. 文档中的IP地址要更换成自己的IP地址,要谨记!!! 1.2 基本环境配置 kubeadm安装方式自1 ...