Sum (欧拉定理)
题面
提示:无限输入
题解
一看这题的数据
...............................
这也太大了,必须边输入边取模才行,
但是式子很复杂,所以必须推出一些结论。
因为Xk是有顺序的,所以相当与给班级分名额的经典组合数例子,S(k)就等于C(N-1,K-1)
答案应该是
这是不是就是杨辉三角的第n行的和?
因为杨辉三角的第n行所有的数都是由顶上的那一个1得到的,每一个数aij对下一行的贡献都是2aij,所以开头的那一个1对第n行的贡献就是 1<<n ,也就是2^(n-1)。
因为1e9 + 7是质数,所以我们用欧拉定理来做:
CODE
#include<cstdio>
#include<iostream>
#include<cstring>
#include<algorithm>
#define LL long long
using namespace std;
LL mod = 1e9 + 7ll,mod2 = 1e9 + 6ll;
LL n,m,i,j,s,o,k;
char ss[1000005];
LL superread() {
LL f = 1,x = 0,cn = 0;char s = ss[++cn];
while(s < '0' || s > '9') {if(s == '-') f = -1;s = ss[++cn];}
while(s >= '0' && s <= '9') {x = x * 10ll + s - '0';x %= mod2;s = ss[++cn];}
return x * f % mod2;
}
LL qkpow(LL a,LL b) {
if(b == 0) return 1;
if(b == 1) return a;
LL as = qkpow(a,b >> 1) % mod;
return as * as % mod * qkpow(a,b & 1) % mod;
}
int main() {
while(~scanf("%s",ss + 1)) {
n = superread();
printf("%lld\n",qkpow(2,n) * qkpow(2,mod - 2) % mod);
}
return 0;
}
Sum (欧拉定理)的更多相关文章
- HDOJ 4704 Sum 规律 欧拉定理
规律 欧拉定理: 找规律 2^n-1 ,n 非常大用欧拉定理 Sum Time Limit: 2000/1000 MS (Java/Others) Memory Limit: 131072/13 ...
- 题解报告:hdu 4704 Sum(扩展欧拉定理)
Problem Description Sample Input 2 Sample Output 2 Hint 1. For N = 2, S(1) = S(2) = 1. 2. The input ...
- 【BZOJ4869】相逢是问候(线段树,欧拉定理)
[BZOJ4869]相逢是问候(线段树,欧拉定理) 题面 BZOJ 题解 根据欧拉定理递归计算(类似上帝与集合的正确用法) 所以我们可以用线段树维护区间最少的被更新的多少次 如果超过了\(\varph ...
- BZOJ1319Sgu261Discrete Roots——BSGS+exgcd+原根与指标+欧拉定理
题目描述 给出三个整数p,k,a,其中p为质数,求出所有满足x^k=a (mod p),0<=x<=p-1的x. 输入 三个整数p,k,a. 输出 第一行一个整数,表示符合条件的x的个数. ...
- LA 3263 (欧拉定理)
欧拉定理题意: 给你N 个点,按顺序一笔画完连成一个多边形 求这个平面被分为多少个区间 欧拉定理 : 平面上边为 n ,点为 c 则 区间为 n + 2 - c: 思路: 先扫,两两线段的交点,存下来 ...
- Luogu4139 上帝与集合的正确用法 拓展欧拉定理
传送门 题意:求$2^{2^{2^{2^{...}}}} \mod p$的值.$p \leq 10^7$ 最开始想到的是$x \equiv x^2 \mod p$,然后发现不会做... 我们可以想到拓 ...
- P3747 相逢是问候 欧拉定理+线段树
巨难!!! 去年六省联考唯一的一道黑牌题,我今天一天从早到晚,把它从暴力15分怼到了90分,极端接近正解了. bzoj上A了,但是洛谷和loj上面就不行.伪正解会T,奇奇怪怪的类正解会WA.. 那么, ...
- SHOI 2017 相逢是问候(扩展欧拉定理+线段树)
题意 https://loj.ac/problem/2142 思路 一个数如果要作为指数,那么它不能直接对模数取模,这是常识: 诸如 \(c^{c^{c^{c..}}}\) 的函数递增飞快,不是高精度 ...
- 2018牛客网暑期ACM多校训练营(第四场) A - Ternary String - [欧拉降幂公式][扩展欧拉定理]
题目链接:https://www.nowcoder.com/acm/contest/142/A 题目描述 A ternary string is a sequence of digits, where ...
随机推荐
- React中http-proxy-middleware代理使用
React项目npm run start启动本地服务后浏览器访问http://localhost:3000 start命令也可自定义port指定本地运行端口(eg: PORT=3002) 对于单点登录 ...
- 【FAQ】运动健康服务REST API接口使用过程中常见问题和解决方法总结
华为运动健康服务(HUAWEI Health Kit)为三方生态应用提供了REST API接口,通过其接口可访问数据库,为用户提供运动健康类数据服务.在实际的集成过程中,开发者们可能会遇到各种问题,这 ...
- BUUCTF-荷兰宽带数据泄露
荷兰宽带数据泄露 下载后发现是个BIN文件,之前也是做过类似的题目 RouterPassview打开BIn文件即可,搜索username或者password. 最后flag是username
- Windows下MySQL的安装和删除
Windows下MySQL的安装和删除 安装Mysql 1 下载mysql 地址 2 安装教程 2.1配置环境变量 变量名:MYSQL_HOME 变量值:D:\software\programming ...
- UiPath键盘操作的介绍和使用
一.键盘操作的介绍 模拟用户使用键盘操作的一种行为: 例如使用发送热键(Sendhotkey),输入信息 (Typeinto)的操作 二.键盘操作在UiPath中的使用 1.打开设计器,在设计库中新建 ...
- ASPNET Core笔试题
1.如何在ASP.NET Core中激活Session功能? 首先要添加session包. 其次要在configservice方法里面添加session.然后又在configure方法里面调用 use ...
- Vmware虚拟机硬件兼容性
All virtual machines have a hardware version. The hardware version indicates which virtual hardware ...
- 攻防世界进阶区MISC ——56-60
56.low 得到一张bmp,世纪之吻,扔进kali中,binwalk,zsteg,无果,再放进stegsolve中,虽然发现小的数据块,但是过滤通道得不到任何信息,猜测是要用脚本进行 # lsb隐写 ...
- CMU15445 (Fall 2019) 之 Project#3 - Query Execution 详解
前言 经过前面两个实验的铺垫,终于到了给数据库系统添加执行查询计划功能的时候了.给定一条 SQL 语句,我们可以将其中的操作符组织为一棵树,树中的每一个父节点都能从子节点获取 tuple 并处理成操作 ...
- 小红书携手HMS Core,畅玩高清视界,种草美好生活
在相同流量消耗的情况下,540p可秒变1080p?这不是魔法,通过视频超分辨率技术(简称视频超分),就能让视频变得更清晰. 7月20日,在小红书最新版本7.48的App中,用户就能体验到这项技术带来的 ...