P1024 [NOI2001] 食物链【种类并查集】
题意
简化题意:给定 \(n\) 和 \(k(n\leqslant5\times10^4,k\leqslant10^5)\) ,表示有 \(n\) 个动物, \(k\) 个描述,其中:
\(n\) 个动物分别属于 \(A,B,C\) 中的一种,定义如 \(C\to B\to A\to C\) 的环形食物链;
\(k\) 个描述分两种:1.1 x y
表示 \(x,y\) 是同类; 2.2 x y
表示 \(y\to x\) .
在 \(k\) 个描述中,有真假之分,其中假的满足:
- 与之前的真话矛盾;
- \(x\) 或 \(y\) 比 \(n\) 大;
- 同类相吃。
求出假话总数。
思路
思路启发
首先进来一组 \(x,y\) ,易得有且仅有三种有用的关系:
- \(y\) 是 \(x\) 的同类。
- \(y\to x\) , \(y\) 是 \(x\) 的猎物;
- \(y\to x\) , \(x\) 是 \(y\) 的天敌。(其实是与关系1是相互的)
那么,我们要维护三个逻辑关系,即有联通性,又有对立性,就要开 三元种类并查集 了。
实际上就是把一个并查集扩大三倍,在每个并查集里维护联通性,即同类关系;在三个并查集之间维护对立性,即猎物和天敌关系。
实际利用
我们可以假设:(\(B\to A\to C\to B\) ,满足题干关系就行)
- 集合\(A(1\sim n)\) 为中间者;
- 集合\(B(n+1\sim 2n)\) 为猎物;
- 集合\(C(2n+1\sim 3n)\) 为天敌;
现在的目的就是用三个集合,依次维护正确的逻辑关系,如果有假话,那么应无法在上面成立,统计无法成立的关系即可。
不妨用图模拟个样例:
点击查看样例
4 5
1 1 3
2 2 4
2 3 2
1 1 4
2 2 1
\(k_1:\) \(1\) 和 \(3\) 是同类,那么就把它俩合并到一个集合,同时注意到,都在集合\(A\) 中,则分别都会在集合\(B\) 和集合\(C\) 中,它俩同类,那它俩的猎物和天敌必定同类。
\(k_2:\) \(2\) 吃 \(4\) ,则有两个逻辑关系:
- \(4\) 是 \(2\) 的猎物,此时 \(2\) 是中间者,在集合\(A\) ,\(4\) 是猎物,在集合\(B\) ,即 \(4(B)\to2(A)\) ;
- \(2\) 是 \(4\) 的天敌,此时 \(4\) 是中间者,在集合\(A\) ,\(2\) 是天敌,在集合\(C\) ,即 \(4(A)\to2(C)\) ;
但我们观察 \(B\to^1 A\to^2 C\to^3 B\) ,关系 \(3\) 也应存在才能形成循环,即 \(4(C)\to2(B)\) ;
\(k_3:\) 同理。
\(k_4:\) 此时 \(1\) 与 \(4\) 是同类的是假的。
判断同类是否为假,即判断是否存在 \(1\to4\) 或 \(4\to1\) 的情况,即 \(4\) 的猎物是否是 \(1\) 或 \(4\) 的天敌是否是 \(1\) 。(判断有多样,这样统一了左边的 \(1\))
我们非别求一下对应点的根节点看看:
\(k_5:\) 此时 \(2\) 吃 \(1\) 是假的。
判断吃与被吃是否为假,即判断是否存在 \(2\) 与 \(1\) 是同类或 \(2\to1\) 的情况,即 \(2\) 和 \(1\) 是否在同一集合(此时三个集合显然是等效的)或 \(1\) 的猎物是否是 \(2\) 。
code
#include<bits/stdc++.h>
using namespace std;
const int N=5e4+10,K=1e5+10;
int n,k,fa[3*N],cnt;
int get(int x)
{
if(fa[x]==x) return x;
return fa[x]=get(fa[x]);
}
void merge(int x,int y)
{
fa[get(x)]=get(y);
}
int main()
{
cin>>n>>k;
for(int i=1;i<=3*n;i++) fa[i]=i;
for(int i=1;i<=k;i++)
{
int op,x,y;
cin>>op>>x>>y;
if(x>n || y>n) { cnt++; continue; }
if(op==1)
{
if(get(x)==get(y+n) || get(x)==get(y+2*n)) cnt++;
else
{
merge(x,y);
merge(x+n,y+n);
merge(x+2*n,y+2*n);
}
}
else
{
if(get(x)==get(y) || get(x)==get(y+n)) cnt++;
else
{
merge(x,y+2*n);
merge(x+n,y);
merge(x+2*n,y+n);
}
}
}
cout<<cnt<<endl;
return 0;
}
总结
种类并查集不仅可以维护联通性,也可以维护对立性。
P1024 [NOI2001] 食物链【种类并查集】的更多相关文章
- P2024 [NOI2001]食物链(种类并查集)
题目链接: https://www.luogu.org/problemnew/show/P2024 题目描述 动物王国中有三类动物 A,B,C,这三类动物的食物链构成了有趣的环形.A 吃 B,B 吃 ...
- NOI2001|POJ1182食物链[种类并查集 向量]
食物链 Time Limit: 1000MS Memory Limit: 10000K Total Submissions: 65430 Accepted: 19283 Description ...
- POJ1182 食物链 —— 种类并查集
题目链接:http://poj.org/problem?id=1182 食物链 Time Limit: 1000MS Memory Limit: 10000K Total Submissions: ...
- 【题解】P2024 [NOI2001]食物链 - 数据结构 - 并查集
P2024 [NOI2001]食物链 声明:本博客所有题解都参照了网络资料或其他博客,仅为博主想加深理解而写,如有疑问欢迎与博主讨论✧。٩(ˊᗜˋ)و✧*。 题目描述 动物王国中有三类动物 \(A,B ...
- [NOI2001] 食物链 (扩展域并查集)
题目描述 动物王国中有三类动物 A,B,C,这三类动物的食物链构成了有趣的环形.A 吃 B,B 吃 C,C 吃 A. 现有 N 个动物,以 1 - N 编号.每个动物都是 A,B,C 中的一种,但是我 ...
- [NOI2001]食物链(并查集拓展域)&& [HAOI2006]旅行(Kruskal)
题目描述 动物王国中有三类动物 A,B,C,这三类动物的食物链构成了有趣的环形.A 吃 B,B 吃 C,C 吃 A. 现有 N 个动物,以 1 - N 编号.每个动物都是 A,B,C 中的一种,但是我 ...
- POJ 1182 食物链(种类并查集)
记得第一次做这道题的时候,推关系感觉有点复杂,而且写完代码后一直WA,始终找不出错误. 在A了十几道并查集后,再做这道题,发现太小儿科了.发现原来之所以WA,就在于查找根节点时,没有同步更新子节点相对 ...
- 洛谷 P2024 [NOI2001]食物链 (并查集)
嗯... 题目链接:https://www.luogu.org/problemnew/show/P2024 这道题和团伙这道题的思想比较类似,都是一个数组分成几个集合,但这道题的思路更加混乱,建议没做 ...
- P2024 [NOI2001]食物链[扩展域并查集]
大水题一道啊,几分钟切掉. 还是扩展域,每个点拆3个点,之间连边表示有关系(即捕食关系).然后随便判定一下就好了,不难,毕竟NOI上古题目. #include<iostream> #inc ...
- 洛谷 P2024 [NOI2001]食物链(种类并查集,加权并查集)
传送门 解题思路 加权并查集: 什么是加权并查集? 就是记录着每个节点到它的父亲的信息(权值等). 难点:在路径压缩和合并节点时把本节点到父亲的权值转化为到根节点的权值 怎么转化呢? 每道题都不一样Q ...
随机推荐
- 2022.9.10-2022.9.12 Java第一次课总结
本节课中的问题总结如下: 1.Java的基本运行单位是类还是方法? 答:Java的基本运行单位是类. 2.类由什么组成? 答:类由变量/方法/属性/事件等部分组成,其中方法就是我们所熟悉的函数,属性即 ...
- 微信小程序中视频的显示与隐藏
在微信小程序中实现视频的播放与暂停 需求: 视频列表中只能有一个视频在播放 点击视频实现播放与暂停功能 加载完成显示图片,点击后变为视频播放 从上次播放的位置进行播放 思路: 定义一个标记变量,控制视 ...
- 1、使用简单工厂模式设计能够实现包含加法(+)、减法(-)、乘法(*)、除法(/)四种运算的计算机程序,要求输入两个数和运算符,得到运算结果。要求使用相关的工具绘制UML类图并严格按照类图的设计编写程
1.使用简单工厂模式设计能够实现包含加法(+).减法(-).乘法(*).除法(/)四种运算的计算机程序,要求输入两个数和运算符,得到运算结果.要求使用相关的工具绘制UML类图并严格按照类图的设计编写程 ...
- React魔法堂:size-sensor源码略读
前言 echarts-for-react在对echarts进行轻量级封装的基础上,额外提供图表尺寸自适应容器尺寸的这小而实用的功能,而这功能的背后就是本文想介绍的size-sensor了. 源码介绍 ...
- go-zero docker-compose 搭建课件服务(二):编写courseware rpc服务
0.转载 go-zero docker-compose 搭建课件服务(二):编写courseware rpc服务 0.1源码地址 https://github.com/liuyuede123/go-z ...
- 配置文件yaml和ini
前言 本文主要介绍配置文件yaml和ini的读取. 一.yaml文件 YAML是一个可读性高,易于理解,用来表达数据序列化的格式.语法与python的语法类似.文件后缀 .yaml 下面是yaml文 ...
- Springboot 一行代码实现文件上传 20个平台!少写代码到极致
大家好,我是小富~ 技术交流,公众号:程序员小富 又是做好人好事的一天,有个小可爱私下问我有没有好用的springboot文件上传工具,这不巧了嘛,正好我私藏了一个好东西,顺便给小伙伴们也分享一下,d ...
- 9.channels layers
settings.py配置 # 存储在内存里 CHANNEL_LAYERS = { "default": { "BACKEND": "channels ...
- .NET周报【10月第3期 2022-10-25】
国内文章 聊一聊被 .NET程序员 遗忘的 COM 组件 https://www.cnblogs.com/huangxincheng/p/16799234.html 将Windows编程中经典的COM ...
- 苹果 App Store 开始支持隐藏上架应用:只能通过链接下载
据MacRumors报道,苹果公司最近宣布,正如其开发者网站上所概述的那样,App Store现在支持只能通过直接链接才能发现的隐藏应用. 图片来自 Apple 拥有不适合公开发布的应用的开发 ...